Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 541(7636): 242-246, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27841871

RESUMO

Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of 'mix-and-inject' time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


Assuntos
Cristalografia por Raios X/métodos , Nanotecnologia/métodos , Conformação de Ácido Nucleico , RNA Bacteriano/química , Riboswitch , Regiões 5' não Traduzidas/genética , Aptâmeros de Nucleotídeos/química , Cristalização , Difusão , Elétrons , Cinética , Lasers , Ligantes , Modelos Moleculares , Dobramento de RNA , RNA Bacteriano/genética , Fatores de Tempo , Vibrio vulnificus/genética
2.
J Chem Phys ; 152(14): 144303, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295352

RESUMO

The remarkable success of x-ray free-electron lasers and their ability to image biological macromolecules while outrunning secondary radiation damage due to photoelectrons, by using femtosecond pulses, raise the question of whether this can be done using pulsed high-energy electron beams. In this paper, we use excited state molecular dynamics simulations, with tabulated potentials, for rare gas solids to investigate the effect of radiation damage due to inelastic scattering (by plasmons, excitons, and heat) on the pair distribution function. We use electron energy loss spectra to characterize the electronic excitations responsible for radiation damage.

3.
Rep Prog Phys ; 80(11): 115901, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29059048

RESUMO

This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

4.
Opt Express ; 21(13): 15102-12, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842297

RESUMO

The structures of biological molecules may soon be determined with X-ray free-electron lasers without crystallization by recording the coherent diffraction patterns of many identical copies of a molecule. Most analysis methods require a measurement of each molecule individually. However, current injection methods deliver particles to the X-ray beam stochastically and the maximum yield of single particle measurements is 37% at optimal concentration. The remaining 63% of pulses intercept no particles or multiple particles. We demonstrate that in the latter case single particle diffraction patterns can be extracted provided the particles are sufficiently separated. The technique has the potential to greatly increase the amount of data available for three-dimensional imaging of identical particles with X-ray lasers.

5.
Rep Prog Phys ; 75(10): 102601, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22975810

RESUMO

Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump--probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a 'diffract-and-destroy' mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes.


Assuntos
Biologia/instrumentação , Biologia/tendências , Lasers , Raios X
6.
Biophys J ; 100(1): 198-206, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21190672

RESUMO

Membrane proteins constitute > 30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is < 300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 µm. The results demonstrate that there are membrane protein crystals that contain < 100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain < 200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells.


Assuntos
Cianobactérias/química , Nanopartículas/química , Complexo de Proteína do Fotossistema I/química , Difração de Raios X , Pós
7.
Phys Rev Lett ; 106(11): 115501, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469876

RESUMO

We report on the first experimental ab initio reconstruction of an image of a single particle from fluctuations in the scattering from an ensemble of copies, randomly oriented about an axis. The method is applicable to identical particles frozen in space or time (as by snapshot diffraction from an x-ray free electron laser). These fluctuations enhance information obtainable from an experiment such as conventional small angle x-ray scattering.

8.
Ultramicroscopy ; 224: 113234, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33652237

RESUMO

We develop an algorithm capable of imaging a three-dimensional object given a collection of two-dimensional images of that object that are significantly influenced by the curvature of the Ewald sphere. These two-dimensional images cannot be approximated as projections of the object. Such an algorithm is useful in cryo-electron microscopy where larger samples, higher resolution, or lower energy electron beams are desired, all of which contribute to the significance of Ewald curvature.

9.
Ultramicroscopy ; 223: 113211, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582644

RESUMO

Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane.

10.
J Electron Spectros Relat Phenomena ; 170(1-3): 4-12, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20463854

RESUMO

X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

11.
IUCrJ ; 4(Pt 4): 322-339, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875020

RESUMO

The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump-probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo-graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.

12.
Acta Crystallogr A ; 61(Pt 2): 194-200, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15724069

RESUMO

An iterative algorithm is developed to retrieve the complex exit-face wavefunction for a two-dimensional projection of a nanoparticle from a measurement of the oversampled modulus of its Fourier transform in reciprocal space. The algorithm does not require the support (boundary) of the object to be known. A loose support for the complex object is gradually found using the Oszlanyi-Suto charge-flipping algorithm, and a compact support is then iteratively developed using a dynamic Gerchberg-Saxton-Fienup algorithm. At the same time, the complex object is reconstructed using this compact support. The algorithm applies to the reconstruction of complex images with any distribution of phase values from 0 to 2pi. Modification of the algorithm by using real-value constraints for a complex object in the charge-flipping algorithm leads to faster reconstruction of the object whose phase value is smaller than pi/2.

13.
Acta Crystallogr A ; 61(Pt 2): 237-45, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15724074

RESUMO

The effect of the limited alignment of hydrated molecules is considered in a laser-aligned molecular beam, on diffraction patterns taken from the beam. Simulated patterns for a protein beam are inverted using the Fienup-Gerchberg-Saxton phasing algorithm, and the effect of limited alignment on the resolution of the resulting potential maps is studied. For a typical protein molecule (lysozyme) with anisotropic polarizability, it is found that up to 1 kW of continuous-wave near-infrared laser power (depending on dielectric constant), together with cooling to liquid-nitrogen temperatures, may be needed to produce sufficiently accurate alignment for direct observation of the secondary structure of proteins in the reconstructed potential or charge-density map. For a typical virus (TMV), a 50 W continuous-wave laser is adequate for subnanometre resolution at room temperature. The dependence of resolution on laser power, temperature, molecular size, shape and dielectric constant is analyzed.


Assuntos
Proteínas/química , Difração de Raios X/métodos , Algoritmos , Anisotropia , Processamento de Imagem Assistida por Computador , Lasers , Modelos Moleculares , Muramidase/química , Eletricidade Estática , Temperatura , Vírus do Mosaico do Tabaco/química , Vírus do Mosaico do Tabaco/ultraestrutura , Difração de Raios X/instrumentação , Difração de Raios X/estatística & dados numéricos
14.
Struct Dyn ; 2(4): 041701, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26798801

RESUMO

Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

15.
Acta Crystallogr A ; 58(Pt 6): 580-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12388877

RESUMO

Low-dose, low-temperature kinematic and dynamical convergent-beam electron diffraction (CBED) patterns from thin organic crystalline films have been used for the measurement of structure-factor amplitudes and phases. Kinematic conditions are identified by the observation of uniform intensity within the CBED discs and used to determine structure-factor magnitudes. CBED patterns from thicker regions affected by multiple scattering give structure-factor signs, which are varied for best fit. The use of a small probe (and the Kohler SAD mode) minimizes bending artifacts. A new method of thickness determination is evaluated. The approach is tested using experimental data from the centrosymmetric anthracene structure, the results compared with direct methods, and a potential map derived from experimental data. The faint peaks due to H-atom positions may be distinguished. Key issues influencing the validity of the method such as the appropriate dimension of the structure-factor matrix, sample thickness and crystal orientation are discussed.


Assuntos
Antracenos/química , Algoritmos , Temperatura Baixa , Elétrons , Análise de Fourier , Solventes , Xilenos/química
16.
Acta Crystallogr A ; 59(Pt 6): 577-83, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14581757

RESUMO

A procedure for phase extension in electron crystallography is proposed based on the iterative Fienup-Gerchberg-Saxton algorithm in combination with the use of discrete Hilbert transforms. This transform is used to provide oversampling in reciprocal space, thus satisfying the Shannon sampling requirement and introducing reflections with fractional indices. When the procedure is combined with the knowledge of a small set of strong phased Bragg reflections from electron-microscope images (or direct methods), the magnitudes of many non-Bragg reflections can be calculated with useful accuracy, thus enhancing the performance of the iterative algorithm for phase extension. The effects of various constraints used in the iterative algorithm are discussed. In this way, it is shown that the iterative algorithm conventionally used for phasing diffuse scattering from non-periodic objects can also be applied to problems in conventional crystallography to find the phases of high-order (resolution) beams from a known set of low-order (resolution) phases.

17.
Acta Crystallogr A ; 59(Pt 5): 495-505, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12944614

RESUMO

Energy-filtered quantitative electron diffraction at liquid nitrogen temperature has been used to examine the atomic structure and bonding of metastable alpha-Cu phthalocyanine crystals. Three theoretical methods (kinematic, kinematic with excitation errors and Bloch wave) were employed for the intensity calculations. The Bloch-wave method was found to account for dynamical effects by greatly reducing the residual factor between experimental and simulated results. A new method for calculating electron scattering factors for partially charged ions is proposed and the sensitivity of electron diffraction to charge transfer is discussed. The atomic charge states were analyzed for alpha-Cu phthalocyanine using a charge cloud model in which the Gaussian bond charge is positioned along the bonds. Spot patterns were collected in the Kohler mode at two beam energies to reduce error. Using the best-fitting model, a deformation charge-density map is produced and compared to the neutral-atom model. From this, the main features of atomic charge transfer in the alpha-Cu phthalocyanine structure can be seen in the (010) plane.

18.
Acta Crystallogr A ; 58(Pt 1): 4-11, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11752757

RESUMO

This paper shows that the phenomenon of orbital ordering should be detectable by energy-filtered quantitative convergent-beam electron diffraction (QCBED). The structure factors of LaMnO(3) crystals are calculated using a non-spherical atomic scattering model of the Mn(3+) ion. Several low-order electron structure factors showed pronounced change with orbital ordering, in which the e(g)(1) electron orders in the 3d(3z(2) - r(2)) orbital leaving the 3d(x(2) - y(2)) unoccupied. In contrast, the X-ray structure factors showed very small change. Orbital order is important in transition-metal oxides, including colossal magnetoresistive manganite oxides. The calculations show that by using QCBED it is possible to measure the subtle changes in electron structure factors due to orbital ordering of the e(g)(1) electron of the Mn(3+) ion in an LaMnO(3) crystal. A comparison of methods for structure-factor measurement is given, including Bragg X-ray and gamma-ray diffraction, X-ray Pendellösung and critical-voltage methods. New measurements by QCBED of structure factors in rutile are compared with the Bragg X-ray values. These show that QCEBD can provide an accurate extinction-free measurement of low-order structure factors, which is extremely difficult or perhaps impossible when using other methods applied to real crystals.

19.
Acta Crystallogr A ; 60(Pt 4): 326-30, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15218212

RESUMO

The structures of two crystals have been solved using a new iterative phasing method. The iterative phasing algorithm is developed from the 'charge-flipping' method proposed by Oszlányi & Süto [Acta Cryst. (2004), A60, 134-141]. Positivity and point-atom constraints are incorporated within this extremely simple and effective algorithm by flipping (sign reversal) of less-positive density values during the iterations. Convergence is reliably achieved and the two structures were solved. This structure solution method does not require information on atomic scattering factors or symmetry. Heavy atoms can be distinguished from light ones by their charge-density values.

20.
Acta Crystallogr A ; 59(Pt 4): 341-50, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12832813

RESUMO

The low-order structure factors of rutile (TiO(2)) have been measured with an accuracy of up to 0.09% by quantitative convergent-beam electron diffraction (QCBED). This error is an order of magnitude smaller than that in conventional Bragg X-ray diffraction and equivalent to the accuracy of the X-ray Pendellösung method. It is sufficient to distinguish atomic, covalent and ionic bonding. By refinement of the combined data of low-order reflections measured by electron diffraction with high-order reflections from X-ray diffraction, accurate charge-density maps are obtained and used to understand the role of the 3d electrons in Ti-O bonding. The results are combined with electron energy-loss spectra (EELS) in a study of the electronic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA