Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chemistry ; 27(63): 15773-15785, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436799

RESUMO

A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4'-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ouro/farmacologia , Humanos , Compostos Organoáuricos/farmacologia , Tiorredoxina Dissulfeto Redutase
2.
Phys Chem Chem Phys ; 23(20): 11807-11817, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33987634

RESUMO

A family comprising seven arylimido-polyoxometalate (POM) hybrid chromophores (three of which are new), with linear dipolar, C2v and linear centrosymmetric geometries have been synthesised and studied by electronic absorption spectroscopy, electrochemistry, Z-scans (two photon absorption, TPA) and computation (DFT/TD-DFT). These reveal that POM acceptor units are an effective basis for TPA materials: the centrosymmetric bis-POM chromophores produce significant cross sections (δ up to 82 GM) from a single aryl bridge, a similar performance to larger dipolar π-systems combining carbazole or diphenylamino donors with the imido-POM acceptor. DFT/TD-DFT calculations indicate strong communication between POM and organic components is responsible for the linear and non-linear optical behaviour of these compounds, while electrochemical measurements reveal class II mixed valence behaviour resulting from an interplay of through-bond and through-space effects.

3.
J Am Chem Soc ; 142(32): 13856-13866, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786817

RESUMO

Cytosine-rich DNA can fold into secondary structures known as i-motifs. Mounting experimental evidence suggests that these non-canonical nucleic acid structures form in vivo and play biological roles. However, to date, there are no optical probes able to identify i-motif in the presence of other types of DNA. Herein, we report for the first time the interactions between the three isomers of [Ru(bqp)2]2+ with i-motif, G-quadruplex, and double-stranded DNA. Each isomer has vastly different light-switching properties: mer is "on", trans is "off", and cis switches from "off" to "on" in the presence of all types of DNA. Using emission lifetime measurements, we show the potential of cis to light up and identify i-motif, even when other DNA structures are present using a sequence from the promoter region of the death-associated protein (DAP). Moreover, separated cis enantiomers revealed Λ-cis to have a preference for the i-motif, whereas Δ-cis has a preference for double-helical DNA. Finally, we propose a previously unreported light-switching mechanism that originates from steric compression and electronic effects in a tight binding site, as opposed to solvent exclusion. Our work suggests that many published non-emissive Ru complexes could potentially switch on in the presence biological targets with suitable binding sites, opening up a plethora of opportunity in the detection of biological molecules.


Assuntos
Complexos de Coordenação/química , DNA/química , Rutênio/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Estrutura Molecular , Motivos de Nucleotídeos , Solventes/química
4.
Nature ; 498(7453): 228-31, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23719378

RESUMO

Defining mechanisms by which Plasmodium virulence is regulated is central to understanding the pathogenesis of human malaria. Serial blood passage of Plasmodium through rodents, primates or humans increases parasite virulence, suggesting that vector transmission regulates Plasmodium virulence within the mammalian host. In agreement, disease severity can be modified by vector transmission, which is assumed to 'reset' Plasmodium to its original character. However, direct evidence that vector transmission regulates Plasmodium virulence is lacking. Here we use mosquito transmission of serially blood passaged (SBP) Plasmodium chabaudi chabaudi to interrogate regulation of parasite virulence. Analysis of SBP P. c. chabaudi before and after mosquito transmission demonstrates that vector transmission intrinsically modifies the asexual blood-stage parasite, which in turn modifies the elicited mammalian immune response, which in turn attenuates parasite growth and associated pathology. Attenuated parasite virulence associates with modified expression of the pir multi-gene family. Vector transmission of Plasmodium therefore regulates gene expression of probable variant antigens in the erythrocytic cycle, modifies the elicited mammalian immune response, and thus regulates parasite virulence. These results place the mosquito at the centre of our efforts to dissect mechanisms of protective immunity to malaria for the development of an effective vaccine.


Assuntos
Culicidae/parasitologia , Interações Hospedeiro-Parasita/imunologia , Insetos Vetores/parasitologia , Plasmodium chabaudi/imunologia , Plasmodium chabaudi/patogenicidade , Animais , Eritrócitos/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/transmissão , Vacinas Antimaláricas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium chabaudi/isolamento & purificação , Inoculações Seriadas , Virulência/imunologia
5.
Cell Microbiol ; 16(5): 687-700, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24003897

RESUMO

Infection with the malaria parasite, Plasmodium, is associated with a strong inflammatory response and parasite cytoadhesion (sequestration) in several organs. Here, we have carried out a systematic study of sequestration and histopathology during infection of C57Bl/6 mice with Plasmodium chabaudi AS and determined the influence of the immune response. This parasite sequesters predominantly in liver and lung, but not in the brain, kidney or gut. Histopathological changes occur in multiple organs during the acute infection, but are not restricted to the organs where sequestration takes place. Adaptive immunity, and signalling through the IFNγ receptor increased sequestration and histopathology in the liver, but not in the lung, suggesting that there are differences in the adhesion molecules and/or parasite ligands utilized and mechanisms of pathogenesis in these two organs. Exacerbation of pro-inflammatory responses during infection by deletion of the il10 gene resultsin the aggravation of damage to lung and kidney irrespective of the degree of sequestration. The immune response therefore affected both sequestration and histopathology in an organ-specific manner. P. chabaudi AS provides a good model to investigate the influence of the host response on the sequestration and specific organ pathology, which is applicable to human malaria.


Assuntos
Estruturas Animais/imunologia , Malária/imunologia , Malária/patologia , Plasmodium chabaudi/imunologia , Estruturas Animais/parasitologia , Estruturas Animais/patologia , Animais , Histocitoquímica , Camundongos , Camundongos Endogâmicos C57BL
6.
J Immunol ; 188(3): 1178-90, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22205023

RESUMO

Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.


Assuntos
Interleucina-10/biossíntese , Interleucinas/fisiologia , Malária/imunologia , Células Th1/metabolismo , Animais , Inflamação , Interferon gama , Ativação Linfocitária/imunologia , Malária/patologia , Camundongos , Células Th1/imunologia
7.
Front Immunol ; 14: 1171176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646037

RESUMO

Decades of research have probed the molecular and cellular mechanisms that control the immune response to malaria. Yet many studies offer conflicting results on the functional impact of innate immunity for controlling parasite replication early in infection. We conduct a meta-analysis to seek consensus on the effect of innate immunity on parasite replication, examining three different species of rodent malaria parasite. Screening published studies that span four decades of research we collate, curate, and statistically analyze infection dynamics in immune-deficient or -augmented mice to identify and quantify general trends and reveal sources of disagreement among studies. Additionally, we estimate whether host factors or experimental methodology shape the impact of immune perturbations on parasite burden. First, we detected meta-analytic mean effect sizes (absolute Cohen's h) for the difference in parasite burden between treatment and control groups ranging from 0.1475 to 0.2321 across parasite species. This range is considered a small effect size and translates to a modest change in parasitaemia of roughly 7-12% on average at the peak of infection. Second, we reveal that variation across studies using P. chabaudi or P. yoelii is best explained by stochasticity (due to small sample sizes) rather than by host factors or experimental design. Third, we find that for P. berghei the impact of immune perturbation is increased when young or female mice are used and is greatest when effector molecules (as opposed to upstream signalling molecules) are disrupted (up to an 18% difference in peak parasitaemia). Finally, we find little evidence of publication bias suggesting that our results are robust. The small effect sizes we observe, across three parasite species, following experimental perturbations of the innate immune system may be explained by redundancy in a complex biological system or by incomplete (or inappropriate) data reporting for meta-analysis. Alternatively, our findings might indicate a need to re-evaluate the efficiency with which innate immunity controls parasite replication early in infection. Testing these hypotheses is necessary to translate understanding from model systems to human malaria.


Assuntos
Malária , Doenças Parasitárias , Animais , Feminino , Humanos , Camundongos , Imunidade Inata , Parasitemia , Projetos de Pesquisa
8.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37616070

RESUMO

BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Plasmodium vivax , Plasmodium falciparum , Ativação Linfocitária
9.
PLoS Negl Trop Dis ; 17(7): e0011133, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486920

RESUMO

Acute febrile illnesses are still a major cause of mortality and morbidity globally, particularly in low to middle income countries. The aim of this study was to determine any possible metabolic commonalities of patients infected with disparate pathogens that cause fever. Three liquid chromatography-mass spectrometry (LC-MS) datasets investigating the metabolic effects of malaria, leishmaniasis and Zika virus infection were used. The retention time (RT) drift between the datasets was determined using landmarks obtained from the internal standards generally used in the quality control of the LC-MS experiments. Fitted Gaussian Process models (GPs) were used to perform a high level correction of the RT drift between the experiments, which was followed by standard peakset alignment between the samples with corrected RTs of the three LC-MS datasets. Statistical analysis, annotation and pathway analysis of the integrated peaksets were subsequently performed. Metabolic dysregulation patterns common across the datasets were identified, with kynurenine pathway being the most affected pathway between all three fever-associated datasets.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Metabolômica/métodos
11.
Malar J ; 11: 407, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23217144

RESUMO

BACKGROUND: Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. METHODS: Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. RESULTS AND CONCLUSIONS: This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.


Assuntos
Anopheles/parasitologia , Vetores de Doenças , Malária/transmissão , Plasmodium chabaudi/isolamento & purificação , Animais , Modelos Animais de Doenças , Entomologia/métodos , Feminino , Roedores , Medicina Veterinária/métodos
12.
Front Immunol ; 13: 984323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072606

RESUMO

In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03906474, NCT02927145.


Assuntos
Malária Falciparum , Malária , Parasitos , Adulto , Animais , Humanos , Plasmodium falciparum , Reino Unido
13.
Proc Natl Acad Sci U S A ; 105(3): 973-8, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18198277

RESUMO

Foxp3(+) regulatory T cells develop in the thymus and are essential for maintaining peripheral tolerance to self tissues. We report the critical requirement for CD154 up-regulation specifically on, and during the thymic development of, Foxp3(+) regulatory T cells for the induction of their clonal expansion within the medulla. In the absence of this signal, there was a severe reduction in their thymic generation and output, leading to decreased peripheral numbers. Importantly, CD40 expression on either thymic dendritic or epithelial cells was sufficient to promote the development of normal numbers of Foxp3(+) regulatory T cells. This work suggests that CD154-transduced signals promote Foxp3(+) regulatory T cell development and highlights the plasticity of the thymic stroma for supporting their generation. Crucially, this study demonstrates that Foxp3(+) regulatory T cells can promiscuously accept a single critical signal necessary for their thymic development from different cellular sources, redefining our understanding of their generation.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Timo/imunologia , Timo/metabolismo , Animais , Apresentação de Antígeno/imunologia , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Antígenos CD40/deficiência , Antígenos CD40/genética , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/deficiência , Ligante de CD40/genética , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/citologia , Timo/citologia
14.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33752799

RESUMO

Immunity to malaria is often considered slow to develop but this only applies to defense mechanisms that function to eliminate parasites (resistance). In contrast, immunity to severe disease can be acquired quickly and without the need for improved pathogen control (tolerance). Using Plasmodium chabaudi, we show that a single malaria episode is sufficient to induce host adaptations that can minimise inflammation, prevent tissue damage and avert endothelium activation, a hallmark of severe disease. Importantly, monocytes are functionally reprogrammed to prevent their differentiation into inflammatory macrophages and instead promote mechanisms of stress tolerance to protect their niche. This alternative fate is not underpinned by epigenetic reprogramming of bone marrow progenitors but appears to be imprinted within the remodelled spleen. Crucially, all of these adaptations operate independently of pathogen load and limit the damage caused by malaria parasites in subsequent infections. Acquired immunity to malaria therefore prioritises host fitness over pathogen clearance.


Malaria is a parasitic infection spread by mosquitoes that causes hundreds of millions of cases each year. People are most likely to die from malaria the first time they are infected ­ usually when they are young children. Among those who survive, however, few will develop severe symptoms again, even though they are often reinfected with as many (or even more) parasites. This indicates that people do not get better at eliminating the parasite. Instead, protection from severe malaria is a form of tolerance - the body learns to limit the damage the infection causes. But exactly which mechanisms have to be engaged to tolerate malaria is unclear. One way to achieve tolerance may be to switch off damaging inflammation. Nahrendorf et al. explored this possibility by comparing the immune response of mice to their first and second infection with malaria parasites. During the first infection of life, immune cells release harmful inflammatory molecules that activate the lining of blood vessels, causing tissue damage and severe symptoms. During the second infection, these immune cells shut down inflammation and instead actively promote tissue health to reduce damage and improve outcome. This change in the immune response occurs despite the fact that the number of parasites is the same in both infections. Nahrendorf et al. also found that the mouse's immune cells 'remembered' to tolerate subsequent infections, even after treatment with a drug that kills all malaria parasites. This was possible because malaria permanently altered the spleen, which reprogrammed the response of the immune cells. A single infection is therefore enough to induce long-lived mechanisms of tolerance that can prevent life-threatening disease. These findings have the potential to change the understanding of immunity to malaria, which currently emphasises the importance of killing parasites. New ways to treat and vaccinate people - and to protect young children from severe malaria - may arise by treating tolerance as an equally important form of host defense.


Assuntos
Imunidade Adaptativa/imunologia , Malária/imunologia , Animais , Adaptação ao Hospedeiro , Interações Hospedeiro-Parasita/imunologia , Humanos , Tolerância Imunológica , Inflamação/imunologia , Macrófagos/imunologia , Malária/parasitologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Monócitos/imunologia , Mielopoese/imunologia , Plasmodium chabaudi/fisiologia , Plasmodium falciparum/fisiologia , Baço/imunologia
15.
Elife ; 102021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648633

RESUMO

Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.


Assuntos
Variação Antigênica , Interações Hospedeiro-Patógeno/genética , Malária Falciparum/imunologia , Plasmodium falciparum/genética , Adulto , Animais , Anopheles/parasitologia , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
16.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609964

RESUMO

Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.


Assuntos
Genoma/genética , Malária Falciparum/genética , Animais , Voluntários Saudáveis , Humanos , Masculino , Plasmodium vivax
17.
Front Immunol ; 11: 587756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329568

RESUMO

CD4+ αß T-cells are key mediators of the immune response to a first Plasmodium infection, undergoing extensive activation and splenic expansion during the acute phase of an infection. However, the clonality and clonal composition of this expansion has not previously been described. Using a comparative infection model, we sequenced the splenic CD4+ T-cell receptor repertoires generated over the time-course of a Plasmodium chabaudi infection. We show through repeat replicate experiments, single-cell RNA-seq, and analyses of independent RNA-seq data, that following a first infection - within a highly polyclonal expansion - T-effector repertoires are consistently dominated by TRBV3 gene usage. Clustering by sequence similarity, we find the same dominant clonal signature is expanded across replicates in the acute phase of an infection, revealing a conserved pathogen-specific T-cell response that is consistently a hallmark of a first infection, but not expanded upon re-challenge. Determining the host or parasite factors driving this conserved response may uncover novel immune targets for malaria therapeutic purposes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Malária/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Doença Aguda , Animais , Feminino , Malária/genética , Camundongos Endogâmicos C57BL , Plasmodium chabaudi , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Baço/citologia , Baço/imunologia
18.
Wellcome Open Res ; 5: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500098

RESUMO

The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.

19.
Dalton Trans ; 47(31): 10415-10419, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29947391

RESUMO

A new aryl-imido polyoxometalate non-linear optical chromophore (POMophore) with a diphenylamino donor group attains the highest ßzzz, 0 value (196 × 10-30 esu by Hyper-Rayleigh Scattering, HRS), and best transparency/non-linearity trade off yet for such materials. Stark spectroscopic and DFT investigation of this compound, plus NMe2 and carbazole analogues, show that its high performance results from a combination of strongly dipolar electronic transitions, and strong electronic communication across the π-system.

20.
Nat Microbiol ; 2: 16276, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165471

RESUMO

Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1-5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasites and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintenance of chronic P. falciparum infections7-9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Because pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections.


Assuntos
Malária/parasitologia , Plasmodium/genética , Plasmodium/patogenicidade , Fatores de Virulência/genética , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Doença Crônica , Feminino , Humanos , Malária/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Plasmodium/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA