Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 133(24): 2597-2609, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-30962205

RESUMO

CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30 is expressed on some activated B and T lymphocytes. However, the physiological function of CD30 signaling and its contribution to the generation of CD30+ lymphomas are still poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied the expression of CD30 in different murine B-cell populations. We show that B1 cells expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF4+ plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a constitutively active CD30 receptor in B lymphocytes. These mice displayed an increase in B1 cells in the peritoneal cavity (PerC) and secondary lymphoid organs as well as increased numbers of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs. We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to enhance PC differentiation by increasing activation of NF-κB and promoting higher levels of phosphorylated STAT3 and STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our mouse model mirrors chronic B-cell activation with increased numbers of CD30+ lymphocytes and provides experimental proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis.


Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Antígeno Ki-1/imunologia , Linfoma de Células B/metabolismo , Animais , Antígeno Ki-1/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Transgênicos , Plasmócitos/metabolismo , Plasmócitos/patologia , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Transdução de Sinais/fisiologia
2.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132100

RESUMO

CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein-Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Camundongos , Animais , Herpesvirus Humano 4/fisiologia , Linfócitos B/patologia , Centro Germinativo , Infecções por Herpesviridae/patologia , Modelos Animais de Doenças
3.
Appl Environ Microbiol ; 78(17): 6217-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22752175

RESUMO

Among the adaptive responses of bacteria to rapid changes in environmental conditions, those of the cell envelope are known to be the most crucial. Therefore, several mechanisms with which bacteria change their cell surface and membranes in the presence of different environmental stresses have been elucidated. Among these mechanisms, the release of outer membrane vesicles (MV) in Gram-negative bacteria has attracted particular research interest because of its involvement in pathogenic processes, such as that of Pseudomonas aeruginosa biofilm formation in cystic fibrosis lungs. In this study, we investigated the role of MV formation as an adaptive response of Pseudomonas putida DOT-T1E to several environmental stress factors and correlated it to the formation of biofilms. In the presence of toxic concentrations of long-chain alcohols, under osmotic stress caused by NaCl, in the presence of EDTA, and after heat shock, cells of this strain released MV within 10 min in the presence of a stressor. The MV formed showed similar size and charge properties, as well as comparable compositions of proteins and fatty acids. MV release caused a significant increase in cell surface hydrophobicity, and an enhanced tendency to form biofilms was demonstrated in this study. Therefore, the release of MV as a stress response could be put in a physiological context.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas putida/química , Pseudomonas putida/fisiologia , Vesículas Secretórias/metabolismo , Estresse Fisiológico , Propriedades de Superfície , Álcoois/toxicidade , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Pressão Osmótica , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA