Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chemistry ; 30(19): e202304126, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38221894

RESUMO

Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man). Here, we report a structure-activity relationship (SAR) study based on the top-down deconstruction of best-in-class multivalent inhibitors. This approach provides a valuable tool to understand the complex interdependent mechanisms underpinning the inhibitory multivalent effect. Combining SAR experiments, binding stoichiometry assessments, thermodynamic modelling and atomistic simulations allowed us to establish the significant contribution of statistical rebinding mechanisms and the importance of several key parameters, including inhitope accessibility, topological restrictions, and electrostatic interactions. Our findings indicate that strong chelate-binding, resulting from the formation of a cross-linked complex between a multivalent inhibitor and two dimeric JBα-man molecules, is not a sufficient condition to reach high levels of affinity enhancements. The deconstruction approach thus offers unique opportunities to better understand multivalent binding and provides important guidelines for the design of potent and selective multiheaded inhibitors.


Assuntos
Glicosídeo Hidrolases , Imino Açúcares , Humanos , Glicosídeo Hidrolases/metabolismo , Imino Açúcares/química , alfa-Manosidase , Relação Estrutura-Atividade
2.
Chembiochem ; 23(4): e202100640, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34932835

RESUMO

A genetic assay permits simultaneous quantification of two interacting proteins and their bound fraction at the single-cell level using flow cytometry. Apparent in-cellula affinities of protein-protein interactions can be extracted from the acquired data through a titration-like analysis. The applicability of this approach is demonstrated on a diverse set of interactions with proteins from different families and organisms and with in-vitro dissociation constants ranging from picomolar to micromolar.


Assuntos
Proteínas/química , Citometria de Fluxo , Humanos , Ligação Proteica , Análise de Célula Única
3.
Mol Cell Proteomics ; 19(4): 701-715, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32015065

RESUMO

We present a technological advancement for the estimation of the affinities of Protein-Protein Interactions (PPIs) in living cells. A novel set of vectors is introduced that enables a quantitative yeast two-hybrid system based on fluorescent fusion proteins. The vectors allow simultaneous quantification of the reaction partners (Bait and Prey) and the reporter at the single-cell level by flow cytometry. We validate the applicability of this system on a small but diverse set of PPIs (eleven protein families from six organisms) with different affinities; the dissociation constants range from 117 pm to 17 µm After only two hours of reaction, expression of the reporter can be detected even for the weakest PPI. Through a simple gating analysis, it is possible to select only cells with identical expression levels of the reaction partners. As a result of this standardization of expression levels, the mean reporter levels directly reflect the affinities of the studied PPIs. With a set of PPIs with known affinities, it is straightforward to construct an affinity ladder that permits rapid classification of PPIs with thus far unknown affinities. Conventional software can be used for this analysis. To permit automated analysis, we provide a graphical user interface for the Python-based FlowCytometryTools package.


Assuntos
Citometria de Fluxo , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Fluorescência , Genes Reporter , Peroxinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Padrões de Referência , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
4.
Bioorg Med Chem ; 51: 116513, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798379

RESUMO

A series of new quinazolinedione derivatives have been readily synthesized and evaluated for their in vitro antiplasmodial growth inhibition activity. Most of the compounds inhibited P. falciparum FcB1 strain in the low to medium micromolar concentration. The 2-ethoxy 8ag', 2-trifluoromethoxy 8ai' and 4-fluoro-2-methoxy 8ak' showed the best inhibitory activity with EC50 values around 5 µM and were non-toxic to the primary human fibroblast cell line AB943. However, these compounds were less potent than the original hit MMV665916, which showed remarkable growth inhibition with EC50 value of 0.4 µM and presented the highest selectivity index (SI > 250). In addition, a novel approach for determining the docking poses of these quinazolinedione derivatives with their potential protein target, the P. falciparum farnesyltransferase PfFT, was investigated.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 47(21): 11164-11180, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602465

RESUMO

The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Complexos Multiproteicos/fisiologia , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Transativadores/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Histona-Lisina N-Metiltransferase/fisiologia , Complexos Multiproteicos/metabolismo , Ligação Proteica
6.
Mol Syst Biol ; 14(1): e7803, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335276

RESUMO

More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be "personalized" according to the genotype, their variation may then reveal how DNA variants operate in the network. Here, we combined experiments and computations to visualize natural alleles of the yeast GAL3 gene in a space of model parameters describing the galactose response network. Alleles altering the activation of Gal3p by galactose were discriminated from those affecting its activity (production/degradation or efficiency of the activated protein). The approach allowed us to correctly predict that a non-synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional repressor. Our results illustrate how personalizing gene regulatory models can be used for the mechanistic interpretation of genetic variants.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Alelos , Sítios de Ligação , Galactose/farmacologia , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Modelos Moleculares , Ligação Proteica , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
7.
Mol Cell Proteomics ; 12(7): 1939-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23579184

RESUMO

We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as "bait," allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Calcineurina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Aptâmeros de Peptídeos/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Ratos , Técnicas do Sistema de Duplo-Híbrido
8.
J Comput Chem ; 33(5): 475-83, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22180257

RESUMO

Molecular dynamics (MD) simulations provide essential information about the thermodynamics and kinetics of proteins. Technological advances in both hardware and algorithms have seen this method accessing timescales that used to be unreachable only few years ago. The quest to simulate slow, biologically relevant macromolecular conformational changes, is still open. Here, we present an approximate approach to increase the speed of MD simulations by a factor of ∼4.5. This is achieved by using a large integration time step of 7 fs, in combination with frozen covalent bonds and look-up tables for nonbonded interactions of the solvent. Extensive atomistic MD simulations for a flexible peptide in water show that the approach reproduces the peptide's equilibrium conformational changes, preserving the essential properties of both thermodynamics and kinetics. Comparison of this approximate method with state-of-the-art implicit solvation simulations indicates that the former provides a better description of the underlying free-energy surface. Finally, simulations of a 33-residue peptide show that these fast MD settings are readily applicable to investigate biologically relevant systems.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Cinética , Substâncias Macromoleculares/química
9.
Elife ; 102021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620312

RESUMO

Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of ß-carotene with light, and human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.


In a biologist's toolkit, the Cre protein holds a special place. Naturally found in certain viruses, this enzyme recognises and modifies specific genetic sequences, creating changes that switch on or off whatever gene is close by. Genetically engineering cells or organisms so that they carry Cre and its target sequences allows scientists to control the activation of a given gene, often in a single tissue or organ. However, this relies on the ability to activate the Cre protein 'on demand' once it is in the cells of interest. One way to do so is to split the enzyme into two pieces, which can then reassemble when exposed to blue light. Yet, this involves the challenging step of introducing both parts separately into a tissue. Instead, Duplus-Bottin et al. engineered LiCre, a new system where a large section of the Cre protein is fused to a light sensor used by oats to detect their environment. LiCre is off in the dark, but it starts to recognize and modify Cre target sequences when exposed to blue light. Duplus-Bottin et al. then assessed how LiCre compares to the two-part Cre system in baker's yeast and human kidney cells. This showed that the new protein is less 'incorrectly' active in the dark, and can switch on faster under blue light. The improved approach could give scientists a better tool to study the role of certain genes at precise locations and time points, but also help them to harness genetic sequences for industry or during gene therapy.


Assuntos
Integrases/genética , Optogenética/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Humanos , Integrases/metabolismo , Luz , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Phys Chem B ; 112(19): 6168-74, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18331019

RESUMO

We derive a nonequilibrium thermodynamics identity (the "differential fluctuation theorem") that connects forward and reverse joint probabilities of nonequilibrium work and of arbitrary generalized coordinates corresponding to states of interest. This identity allows us to estimate the free energy difference between domains of these states. Our results follow from a general symmetry relation between averages over nonequilibrium forward and backward path functions derived by Crooks [Crooks, G. E. Phys. Rev. E 2000, 61, 2361-2366]. We show how several existing nonequilibrium thermodynamic identities can be obtained directly from the differential fluctuation theorem. We devise an approach for measuring conformational free energy differences, and we demonstrate its applicability to the analysis of molecular dynamics simulations by estimating the free energy difference between two conformers of the alanine dipeptide model system. We anticipate that these developments can be applied to the analysis of laboratory experiments.


Assuntos
Teorema de Bayes , Alanina/química , Simulação por Computador , Dipeptídeos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA