Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(1): 53-58, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255053

RESUMO

Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ∼3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δ13C compositions to vary systematically taxon to taxon from -31‰ to -39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δ13C values of each of the five taxa are lower than those of bulk samples of Apex kerogen (-27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (-27.6‰), and those typical of modern prokaryotic phototrophs (-25 ± 10‰). The SIMS data for the two highest δ13C Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δ13C taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δ13C taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.


Assuntos
Archaea/química , Isótopos de Carbono/análise , Fósseis , Datação Radiométrica , Austrália
2.
Chem Geol ; 5402020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34866642

RESUMO

The performance of multi-collector secondary ion mass spectrometry (MC-SIMS) for Mg isotope ratio analysis was evaluated using 17 olivine and 5 pyroxene reference materials (RMs). The Mg isotope composition of these RMs was accurately and precisely determined by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these measured isotope ratios were used to evaluate SIMS instrumental mass bias as a function of the forsterite (Fo) content of olivine. The magnitude of the Mg isotope matrix effects were ~3‰ in δ25Mg, and are a complex function of olivine Fo content, that ranged from Fo59.3 to Fo100. In addition to these Mg isotope matrix effects, Si+ ion yields and Mg+/Si+ ion ratios varied as a complex function of the Fo content of the olivine RMs. For example, Si+ ion yields varied by ~33%. Based on the observations, we propose instrumental bias correction procedures for SIMS Mg isotope analysis of olivine using a combination of Mg+/Si+ ratios and Fo content of olivine. Using this correction method, the accuracy of δ25Mg analyses is 0.3‰, except for analysis of olivine with Fo86-88 where instrumental biases and Mg+/Si+ ratios change dramatically with Fo content, making it more difficult to assess the accuracy of Mg isotope ratio measurements by SIMS over this narrow range of Fo content. Five pyroxene RMs (3 orthopyroxenes and 2 clinopyroxenes) show smaller ranges of instrumental bias (~1.4‰ in δ25Mg) as compared to the olivine RMs. The instrumental bias for the 3 orthopyroxene RMs do not define a linear relationship with respect to enstatite (En) content, that ranged from En85.5 -96.3. The clinopyroxene RMs have similar En and wollastonite (Wo) contents but have δ25Mg values that differ by 0.5‰ relative to their δ25Mg values determined by MC-ICP-MS. These results indicate that additional factors (e.g., minor element abundances) likely contribute to SIMS instrumental mass fractionation. In order to better correct for these SIMS matrix effects, additional pyroxene RMs with various chemical compositions and known Mg isotope ratios are needed.

3.
Geostand Geoanal Res ; 42(4): 431-457, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30686958

RESUMO

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean 206Pb/238U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the calculated alpha doses of 1.48 × 1018 g-1 (GZ7) and 2.53 × 1018 g-1 (GZ8), respectively, and the (U-Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U mass fractions are 680 µg g-1 (GZ7) and 1305 µg g-1 (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti mass fractions 25.08 µg g-1 ± 0.18 µg g-1; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon temperature estimates.

4.
Environ Sci Technol ; 50(12): 6374-80, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27249316

RESUMO

Manganese is biogeochemically cycled between aqueous Mn(II) and Mn(IV) oxides. Aqueous Mn(II) often coexists with Mn(IV) oxides, and redox reactions between the two (e.g., comproportionation) are well known to result in the formation of Mn(III) minerals. It is unknown, however, whether aqueous Mn(II) exchanges with structural Mn(III) in manganese oxides in the absence of any mineral transformation (similar to what has been reported for aqueous Fe(II) and some Fe(III) minerals). To probe whether atoms exchange between a Mn(III) oxide and water, we use a (17)O tracer to measure oxygen isotope exchange between structural oxygen in manganite (γ-MnOOH) and water. In the absence of aqueous Mn(II), about 18% of the oxygen atoms in manganite exchange with the aqueous phase, which is close to the estimated surface oxygen atoms (∼11%). In the presence of aqueous Mn(II), an additional 10% (for a total of 28%) of the oxygen atoms exchange with water, suggesting that some of the bulk manganite mineral (i.e., beyond surface) is exchanging with the fluid. Exchange of manganite oxygen with water occurs without any observable change in mineral phase and appears to be independent of the rapid Mn(II) sorption kinetics. These experiments suggest that Mn(II) catalyzes manganese oxide recrystallization and illustrate a new pathway by which these ubiquitous minerals interact with their surrounding fluid.


Assuntos
Compostos Férricos , Oxigênio , Manganês/química , Oxirredução , Isótopos de Oxigênio
5.
Astrobiology ; 18(5): 519-538, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29791234

RESUMO

Sedimentological observations from the Paleoproterozoic Huronian Supergroup are suggested to mark the rise in atmospheric oxygen at that time, which is commonly known as the Great Oxidation Event (GOE) and typically coupled with a transition from mass-independent fractionation (MIF) to mass-dependent fractionation (MDF) of sulfur isotopes. An early in situ study of S three-isotopes across the Huronian Supergroup by Papineau et al. ( 2007 ) identified a weak MIF-MDF transition. However, the interpretation and stratigraphic placement of this transition is ambiguous. In this study, all four S isotopes were analyzed for the first time in two Huronian drill cores by secondary ion mass spectrometer (SIMS), and both Δ33S and Δ36S were calculated. Based on improved precision and detailed petrography, we reinterpret the dominance of pyrrhotite in the studied sections, which was previously proposed as "early authigenic" in origin, as resulting from regional metamorphism. Small but analytically resolvable nonzero values of Δ33S (from -0.07‰ to +0.38‰) and Δ36S (from -4.1‰ to +1.0‰) persist throughout the lower Huronian Supergroup. Neither pronounced MIF-S signals nor a MIF-MDF transition are seen in this study. Four scenarios are proposed for the genesis of small nonzero Δ33S and Δ36S values in the Huronian: homogenization by regional metamorphism, recycling from older pyrite, dilution by magmatic fluids, and the occurrence of MDF. We argue that the precise location of the MIF-MDF transition in the Huronian remains unsolved. This putative transition may have been erased by postdepositional processes in the lower Huronian Supergroup, or may be located in the upper Huronian Supergroup. Our study highlights the importance of integrated scanning electron microscopy and secondary ion mass spectrometry techniques in deep-time studies and suggests that different analytical methods (bulk vs. SIMS) and diagenetic history (primary vs. metamorphic) among different basins may have caused inconsistent interpretations of S isotope profiles of the GOE successions at a global scale. Key Words: Great Oxidation Event (GOE)-Secondary ion mass spectrometer (SIMS)-Paleoproterozoic-Sulfur isotopes-Mass independent fractionation (MIF). Astrobiology 18, 519-538.


Assuntos
Sedimentos Geológicos/análise , Espectrometria de Massa de Íon Secundário , Isótopos de Enxofre/análise , Fracionamento Químico/métodos , Sedimentos Geológicos/química , América do Norte , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA