Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Small ; : e2310813, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700050

RESUMO

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
Nano Lett ; 23(15): 7114-7119, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470781

RESUMO

We present laser-driven rescattering of electrons at a nanometric protrusion (nanotip), which is fabricated with an in situ neon ion sputtering technique applied to a tungsten needle tip. Electron energy spectra obtained before and after the sputtering show rescattering features, such as a plateau and high-energy cutoff. Extracting the optical near-field enhancement in both cases, we observe a strong increase of more than 2-fold for the nanotip. Accompanying finite-difference time-domain (FDTD) simulations show a good match with the experimentally extracted near-field strengths. Additionally, high electric field localization for the nanotip is found. The combination of transmission electron microscope imaging of such nanotips and the determination of the near-field enhancement by electron rescattering represent a full characterization of the electric near-field of these intriguing electron emitters. Ultimately, nanotips as small as single nanometers can be produced, which is of utmost interest for electron diffraction experiments and low-emittance electron sources.

3.
J Am Chem Soc ; 145(32): 17902-17911, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534987

RESUMO

The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.

4.
J Am Chem Soc ; 145(23): 12487-12498, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261429

RESUMO

High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of "electronic grade" structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion.

5.
Small ; 19(27): e2300241, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932894

RESUMO

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

6.
Langmuir ; 39(30): 10312-10320, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462454

RESUMO

Using electrostatic self-assembly and electrostatic nanotemplating, a quaternary nanostructured system consisting of zinc oxide nanoparticles, gold nanoparticles, poly[3-(potassium-4-butanoate)thiophene-2,5-diyl] (PT), and methyltrioctylammonium chloride (MTOA) (PT-MTOA-ZnO-Au) was designed for aqueous photocatalysis. The PT-MTOA hollow sphere aggregates served as an electrostatic template for both individual inorganic nanoparticles controlling their morphology, stabilizing the nanoparticles, and acting as a photosensitizer. The hybrid structures included spherical ZnO nanoparticles with a diameter of d = 2.6 nm and spherical Au nanoparticles with d = 6.0 nm embedded in PT-MTOA hollow spheres with a hydrodynamic radius of RH = 100 nm. The ZnO nanoparticles acted as the main catalyst, while the Au nanoparticles acted as the cocatalyst. As a photocatalytic model reaction, the dye degradation of methylene blue in aqueous solution using the full spectral range from UV to visible light was tested. The photocatalytic activity was optimized by varying the Zn and Au loading ratios and was substantially enhanced regarding the components; for example, it was increased by about 61% using PT-MTOA-ZnO-Au compared to the composite without gold particles. A photocatalytic mechanism of the methylene blue degradation was proposed when catalyzed by these multicomponent nano-objects. Thus, a simple procedure of templating two different nanoparticle species within the same cocatalytically active template has been demonstrated, which can be extended to other inorganic particles, making a variety of task-specific catalysts accessible.

7.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36649645

RESUMO

Flexible electrodes using nanowires (NWs) suffer from challenges of long-term stability and high junction resistance which limit their fields of applications. Welding via thermal annealing is a common strategy to enhance the conductivity of percolated NW networks, however, it affects the structural and mechanical integrity of the NWs. In this study we show that the decoration of NWs with an ultrathin metal oxide is a potential alternative procedure which not only enhances the thermal and chemical stability but, moreover, provides a totally different mechanism to reduce the junction resistance upon heat treatment. Here, we analyze the effect of SnOxdecoration on the conductance of silver NWs and NW junctions by using a four-probe measurement setup inside a scanning electron microscope. Dedicated transmission electron microscopy analysis in plan-view and cross-section geometry are carried out to characterize the nanowires and the microstructure of the junctions. Upon heat treatment the junction resistance of both plain silver NWs and SnOx-decorated NWs is reduced by around 80%. While plain silver NWs show characteristic junction welding during annealing, the SnOx-decoration reduces junction resistance by a solder-like process which does not affect the mechanical integrity of the NW junction and is therefore expected to be superior for applications.

8.
Angew Chem Int Ed Engl ; 62(47): e202314183, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815890

RESUMO

Three-dimensionally (3D) well-ordered and highly integrated graphene hybrid architectures are considered to be next-generation multifunctional graphene materials but still remain elusive. Here, we report the first realization of unprecedented 3D-patterned graphene nano-ensembles composed of a graphene monolayer, a tailor-made structured organophenyl layer, and three metal oxide films, providing the first example of such a hybrid nano-architecture. These spatially resolved and hierarchically structured quinary hybrids are generated via a two-dimensional (2D)-functionalization-mediated atomic layer deposition growth process, involving an initial lateral molecular programming of the graphene lattice via lithography-assisted 2D functionalization and a subsequent stepwise molecular assembly in these regions in the z-direction. Our breakthrough lays the foundation for the construction of emerging 3D-patterned graphene heterostructures.

9.
J Am Chem Soc ; 144(13): 5834-5840, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341248

RESUMO

Transition metal dichalcogenides are attractive 2D materials in the context of solar energy conversion. Previous investigations have focused predominantly on the properties of these systems. The realization of noncovalent hybrids with, for example, complementary electroactive materials remains underexplored to this date for exfoliated WS2. In this contribution, we explore WS2 by means of exfoliation and integration together with visible light-absorbing and electron-accepting perylene diimides into versatile electron-donor acceptor hybrids. Important is the distinct electron-donating feature of WS2. Detailed spectroscopic investigations of WS2-PDI confirm the electron donor/acceptor nature of the hybrid and indicate that green light photoexcitation leads to the formation of long-lived WS2•+-PDI•- charge-separated states.

10.
Angew Chem Int Ed Engl ; 61(35): e202208084, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35790063

RESUMO

Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles.

11.
Angew Chem Int Ed Engl ; 61(16): e202117455, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35129874

RESUMO

Supraparticles are spherical colloidal crystals prepared by confined self-assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal-organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle-dependent coloration of the MOF supraparticles to the presence of ordered, onion-like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well-visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.

12.
Angew Chem Int Ed Engl ; 61(39): e202208163, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35903982

RESUMO

Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3 HHAE2 . This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3 HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 µA cm-2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.

13.
Chemphyschem ; 22(11): 1079-1087, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792107

RESUMO

The ability of a series of bridged triarylamines, so-called N-heterotriangulenes, to form multilayer-type 2D-extended films via a solution-based processing method was examined using complementary microscopic techniques. We found that the long-range order, crystallinity, and layer thickness decisively depend on the nature of the substituents attached to the polycyclic backbone. Owing to their flat core unit, compounds exhibiting a carbonyl unit at the bridge position provide a superior building block as compared to thioketone-bridged derivatives. In addition, nature and length of the peripheral substituents affect the orientation of the aromatic core unit within highly crystalline films. Hence, our results stress the significance of a suitable molecular framework and provide deeper understanding of structure formation in 2D-confined surroundings for such compounds.

14.
Soft Matter ; 17(42): 9765-9771, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34647955

RESUMO

The molecular self-organization of α,ω-dihexylsexithiophene (α,ω-DH6T) monolayers prepared at the solvent-water interface is investigated by complementary microscopy techniques. Our study focuses on the influence of solvents and initial droplet volume on the resulting film morphology. Long-range extended domains in the monolayer regime are detected by visible light microscopy only for toluene. Small-area electron diffraction (SAED) proves the formation of single-crystalline monolayers with structural parameters identical to the organic bulk crystals. In comparison with conventional vacuum sublimated thin films a deviant molecular orientation, derived from near-edge-X-ray absorption fine structure (NEXAFS) in combination with a lower step height measured by atomic-force-microscopy (AFM), indicates a different behaviour of the flexible terminal hexyl chains during growth in a liquid surrounding. Furthermore, a structural degradation over time is observed which is caused by residual solvent molecules that are incorporated during the transfer procedure.

15.
Chemistry ; 26(29): 6535-6544, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32141636

RESUMO

Two-dimensional (2D) molybdenum disulfide (MoS2 ) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS2 nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS2 using thiols has emerged as one of the key strategies for engineering defects. Herein, we demonstrate an approach to controllably engineer the SVs of chemically exfoliated MoS2 nanosheets using a series of substituted thiophenols in solution. The degree of functionalization can be tuned by varying the electron-withdrawing strength of substituents in thiophenols. We find that the intensity of 2LA(M) peak normalized to A1g peak strongly correlates to the degree of functionalization. Our results provide a spectroscopic indicator to monitor and quantify the defect engineering process. This method of MoS2 defect functionalization in solution also benefits the further exploration of defect-free MoS2 for a wide range of applications.

16.
Inorg Chem ; 59(3): 1973-1984, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971380

RESUMO

Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTS and CZTSe, respectively) and their mixed chalcogenide phase Cu2ZnSnSxSe4-x (CZTSS(e)) are benign and cheap photovoltaic absorber materials that represent a valuable alternative to the more expensive chalcogenide systems: i.e., Cu(In,Ga)SS(e)2 (CIGSS(e)). One of the main challenges related to the fabrication of CZTS(e) layers is the control over both the crystalline phase (tetragonal, cubic, or hexagonal) and the formation of binary (MS, M = Cu(II), Zn(II), Sn(II); M'2-xS, M'= Cu(I), x = 0, 0.2; M″S2, M″ = Sn(IV)) and ternary products (CTS phases, Cu2SnS3, Cu3SnS4) that hinder the performance of the corresponding devices. In the present work, we rationalize the formation pathway of the CZTS phase through binary and ternary products when salt precursors with chloride and acetate as counteranions, respectively, are employed. The results show that the counteranions have a remarkable influence on the formation pathway of CZTS nanoparticles. The use of chloride precursors leads to the predominant formation of CTSs ternary phases (Cu2SnS3, Cu3SnS4), whereas the formation of the CZTS phase is not observed even for higher temperature and longer reaction time (250 °C, 24 h). In the case of acetates the copresence of CZTS as the main product, together with binary and ternary phases, is observed in the early stages of the reaction even at lower temperature and shorter reaction time (200 °C, 2 h), while when the reaction time and temperature are increased, only the CZTS phase is observed. In addition to a careful microstructural characterization of the as-synthesized materials by Raman spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM), we shed light on the reactivity among the metal precursors, the organic ligand oleylamine, and the sulfur precursor carbon disulfide (CS2) by 13C nuclear magnetic resonance (13C NMR) and investigate in depth the effect on particle surfaces by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and XPS. A rationale for the formation pathway of CZTS nanoparticles is proposed and supported by experimental evidence.

17.
Nature ; 505(7484): 533-7, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24352231

RESUMO

Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB B[Symbol: see text]AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.

18.
J Chem Phys ; 153(10): 104702, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933289

RESUMO

Supported catalytically active liquid metal solutions have been receiving increasing attention recently. We investigated the oxidation behavior of macroscopic Rh-Ga alloy droplets and Rh-Ga model catalyst nanoparticles supported on SiO2/Si(100) with low Rh content (<2.5 at. %) by x-ray photoelectron spectroscopy in ultra-high vacuum and under near-ambient pressure conditions using different photon energies and also using transmission electron microscopy. The experiments are accompanied by computational studies on the Ga oxide/Rh-Ga interface and Rh-Ga intermetallic compounds. For both Rh-Ga alloy droplets and Rh-Ga model catalyst nanoparticles, exposure to molecular oxygen leads to the formation of an oxide shell in which Rh is enriched. Transmission electron microscopy on the Rh-Ga nanoparticles confirms the formation of an ∼4 nm thick gallium oxide film containing Rh. Based on ab initio molecular dynamics and computational studies on the Ga2O3/Ga interface, it is concluded that Rh incorporation into the Ga2O3 film occurs by substituting octahedrally coordinated Ga.

19.
Angew Chem Int Ed Engl ; 59(42): 18786-18794, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32652750

RESUMO

In the scientific race to build up photoactive electron donor-acceptor systems with increasing efficiencies, little is known about the interplay of their building blocks when integrated into supramolecular nanoscale arrays, particularly in aqueous environments. Here, we describe an aqueous donor-acceptor ensemble whose emergence as a nanoscale material renders it remarkably stable and efficient. We have focused on a tetracationic zinc phthalocyanine (ZnPc) featuring pyrenes, which shows an unprecedented mode of aggregation, driven by subtle cooperation between electrostatic and π-π interactions. Our studies demonstrate monocrystalline growth in solution and a symmetry-breaking intermolecular charge transfer between adjacent ZnPcs upon photoexcitation. Immobilizing a negatively charged fullerene (C60 ) as electron acceptor onto the monocrystalline ZnPc assemblies was found to enhance the overall stability, and to suppress the energy-wasting charge recombination found in the absence of C60 . Overall, the resulting artificial photosynthetic model system exhibits a high degree of preorganization, which facilitates efficient charge separation and subsequent charge transport.

20.
Chemistry ; 25(63): 14430-14440, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31478582

RESUMO

The successful synthesis of hierarchically structured titanium silicalite-1 (TS-1) with large intracrystalline macropores by steam-assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation-based ptychographic X-ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon-to-titanium ratio of the macroporous TS-1 samples was successfully tuned from 100 to 44. The hierarchically structured TS-1 exhibited high activity in the liquid phase epoxidation of 2-octene with hydrogen peroxide. The hierarchically structured TS-1 surpassed a conventional nano-sized TS-1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA