Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675120

RESUMO

The purpose of the present study was to investigate the anti-staphylococcal activity of liposomal daptomycin against four biofilm-producing S. aureus and S. epidermidis clinical strains, three of which are methicillin-resistant. Neutral and negatively charged daptomycin-loaded liposomes were prepared using three methods, namely, thin-film hydration (TFH), a dehydration-rehydration vesicle (DRV) method, and microfluidic mixing (MM); moreover, they were characterized for drug encapsulation (EE%), size distribution, zeta-potential, vesicle stability, drug release, and drug integrity. Interestingly, whilst drug loading in THF and DRV nanosized (by extrusion) vesicles was around 30-35, very low loading (~4%) was possible in MM vesicles, requiring further explanatory investigations. Liposomal encapsulation protected daptomycin from degradation and preserved its bioactivity. Biofilm mass (crystal violet, CV), biofilm viability (MTT), and growth curve (GC) assays evaluated the antimicrobial activity of neutral and negatively charged daptomycin-liposomes towards planktonic bacteria and biofilms. Neutral liposomes exhibited dramatically enhanced inhibition of bacterial growth (compared to the free drug) for all species studied, while negatively charged liposomes were totally inactive. Biofilm prevention and treatment studies revealed high antibiofilm activity of liposomal daptomycin. Neutral liposomes were more active for prevention and negative charge ones for treating established biofilms. Planktonic bacteria as well as the matured biofilms of low daptomycin-susceptible, methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) strains were almost completely eradicated by liposomal-daptomycin, indicating the need for their further exploration as antimicrobial therapeutics.

2.
Braz. j. microbiol ; 48(4): 785-790, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889167

RESUMO

ABSTRACT Early diagnosis of tuberculosis is of major clinical importance. Among 4733 clinical specimens collected from 3363 patients and subjected to Ziehl-Neelsen microscopy, 4109 were inoculated onto Löwenstein-Jensen slants and 3139 in Bactec/9000MB. Polymerase Chain Reaction (PCR) was performed in 3139 specimens, whereas, a genotypic assay was directly applied in 93 Mycobacterium tuberculosis complex PCR-positive for isoniazid and rifampicin resistance detection specimens (GenoType MTBDRplus). Recovered M. tuberculosis isolates (64) as well as, 21 more sent from Regional Hospitals were tested for antimycobacterial resistance with a phenotypic (manual MGIT-SIRE) and a genotypic assay (GenoType MTBDRplus). PCR in the clinical specimens showed excellent specificity (97.4%) and accuracy (96.8%), good sensitivity (70.4%), but low positive predictive value (40.3%). MGIT-SIRE performed to M. tuberculosis did not confer a reliable result in 16 isolates. Of the remaining 69 isolates, 15 were resistant to streptomycin, seven to isoniazid, seven to ethambutol and five to rifampicin. GenoType MTBDRplus correctly detected isoniazid (seven) and rifampicin-resistant M. tuberculosis strains (five), showing an excellent performance overall (100%). Susceptibility results by the molecular assay applied directly to clinical specimens were identical to those obtained from recovered isolates of the corresponding patients. Combining molecular and conventional methods greatly contribute to early diagnosis and accurate susceptibility testing of tuberculosis.


Assuntos
Humanos , Técnicas de Cultura/métodos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Pulmonar/diagnóstico , Antituberculosos/farmacologia , Técnicas de Cultura/economia , Farmacorresistência Bacteriana , Genótipo , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular/economia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA