Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(14): 5572-5587, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35348317

RESUMO

The mechanistic investigations between Cu(II) and the anisotropic lanthanides (Ln(III)) are not much explored to date. This is due to the complicated energy spectrum which arises due to the orbital angular momentum of anisotropic lanthanides. Interestingly, the exchange coupling J in Ln(III)-Cu(II) systems was found to be antiferromagnetic for <4f7 metal ions and ferromagnetic for ≥4f7 metal ions, while the net magnitude of JTotal strength gradually decreases moving from f1 to f13. While this is established in several examples, the reason for this intriguing trend is not rationalized. In this article, we have taken up these challenging tasks by synthesizing a family of complexes with the general molecular formula [Cu2Ln(HL)4(NO3)](NO3)2, where Ln = La (1-La), Ce (2-Ce), Pr (3-Pr), Gd (4-Gd), Tb (5-Tb), Dy (6-Dy), and Ho (7-Ho) and HL = C15H15N1O3; (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) is a monodeprotonated tridentate Schiff base ligand. Detailed dc magnetic susceptibility measurements performed for all the complexes reveal that the Cu(II) ion is coupled ferromagnetically to the respective Ln(III) ion, which has more than seven electrons in the 4f shell, while an antiferromagnetic coupling is witnessed if Ln(III) has less than seven electrons. The strength of the exchange coupling constant was quantitatively determined for representative complexes from the high-field/high-frequency electron paramagnetic resonance spectroscopy which follows the order of 4-Gd (1.50(10) cm-1) > 5-Tb (1.18(10) cm-1) > 6-Dy (0.56(10) cm-1 based on the -2JCu-Ln(SCu1→·JLnz→+SCu2→·JLnz→) spin Hamiltonian. The increased axiality in 5-Tb and 6-Dy due to the presence of 3d ions in the near vicinity of an oblate ion and the increased exchange coupling strength between Cu(II) and Tb(III) or Dy(III) is the ideal combination to stabilize magnetic bistability in these complexes in the absence of an external magnetic field with the effective energy barrier of 15.7 K (τo = 2.49 × 10-6 s) and 12.6 K (τo = 1.70 × 10-5 s), respectively. To rationalize this experimental trend, we have performed ab initio CASSCF and DFT calculations. To compute the J values, we have employed POLY_ANISO routines and utilized the computed data to establish the generic mechanism of magnetic coupling in {Cu-Ln-Cu} motifs. These mechanistic findings reveal the importance of 5d orbitals and their energy with respect to the dx2-y2 orbital of Cu(II) ions in controlling the magnetic coupling of {Cu-4f} complexes.

2.
Inorg Chem ; 61(1): 317-327, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918918

RESUMO

To investigate the influence of the coordination geometry on the magnetization relaxation dynamics, two geometric isomers of a five-coordinate low-spin Co(II) complex with the general molecular formula [Co(DPPE)2Cl]SnCl3 (DPPE = diphenylphosphinoethane) were synthesized and structurally characterized. While one isomer has a square pyramidal geometry (Co-SP (1)), the other isomer figures a trigonal bipyramidal geometry (Co-TBP (2)). Both complexes were already reported elsewhere. The spin state of these complexes is unambiguously determined by detailed direct current (dc) magnetic data, X-band, and high-frequency EPR measurements. Slow relaxation of magnetization is commonly observed for systems with S > 1/2. However, both 1 and 2 show field-induced slow relaxation of magnetization. Especially 1 shows relaxation times up to τ = 35 ms at T = 1.8 K, which is much longer than the reported values for undiluted Co(II) low-spin monomers. In 2, the maximal field-induced relaxation time is suppressed to τ = 5 ms. We attribute this to the change in g-anisotropy, which is, in turn, correlated to the spatial arrangement of ligands (i.e., coordination geometry) around the Co(II) ions. Besides the detailed electronic structure of these complexes, the experimental observations are further corroborated by theoretical calculations.

3.
Inorg Chem ; 58(14): 9085-9100, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31246445

RESUMO

Four mononuclear cobalt(II) complexes with pseudo tetrahedral geometry were isolated with different counteranions; their structure solution reveals the molecular formula as [Co(L1)4]X2 [where L1 = thiourea (NH2CSNH2) and X = NO3 (1), Br (2), and I (3)] and [Co(L1)4](SiF6) (4). The detailed analysis of direct-current (dc) magnetic data reveals a zero-field splitting (ZFS; D) with mS = ±3/2 as the ground levels (D < 0) for the four complexes. The magnitude of the ZFS parameter is larger, in absolute value, for 1 (D = -61.7 cm-1) than the other three complexes (-5.4, -5.1, and -12.2 cm-1 for 2-4, respectively). The sign of D for 1, 2, and 4 was unambiguously determined by X-band electron paramagnetic resonance (EPR) spectroscopy of the diluted samples (10%) at 5 K. For 3, the sign of D was naturally endorsed from the frequency-dependent out-of-phase signal (χM″) observed in the absence of an external dc magnetic field and confirmed by high-frequency EPR (70-600 GHz) experiments performed on a representative pure polycrystalline 3, which gave a quantitative D value of -5.10(7) cm-1. Further, the drastic changes in the spin Hamiltonian parameters and their related relaxation dynamics phenomena (of 2-4 compared to 1) were rationalized using ab initio complete-active-space self-consistent field/n-electron valence perturbation theory calculations. Calculations disclose that the anion-induced structural distortion observed in 2-4 leads to a nonfavorable overlap between the π orbital of cobalt(II) and the π* orbital of the sulfur atom that reduces the overall |D| value in these complexes compared to 1. The present study demonstrates that not only the first but also the second coordination sphere significantly influences the magnitude of the ZFS parameters. Particularly, a reduction of D of up to ∼90% occurs (in 2-4 compared to 1) upon a simple variation of the counteranions and offers a viable approach to modulate ZFS in transition-metal-containing single-molecule magnets.

4.
Inorg Chem ; 57(12): 7201-7207, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29808682

RESUMO

Two novel compounds, LiCu Ch ( Ch = Se or Te), were synthesized by direct reaction between elements in closed ampules inside corundum crucibles. Both compounds are highly air-sensitive and possess an anti-PbClF crystal structure, which contains Cu Ch layer analogues to the Fe[As/Se] layers in Fe-based superconductors. In electrochemical battery cells, Li can be almost completely extracted from LiCuSe, but the reverse reaction is only partly successful and Li2Se and Cu2- xSe are formed instead. LiCuSe exhibits a temperature independent and slightly positive magnetic susceptibility. From 7Li NMR measurements, the activation energy of the Li ion diffusion process is about 0.5 eV but is slightly lower for LiCuTe as compared to LiCuSe. Also, the small and almost temperature independent NMR shifts of the 7Li nucleus indicate the absence of Pauli paramagnetism in these compounds, consistent with a 3 d10 full valence state of the Cu ions.

5.
Inorg Chem ; 55(17): 8808-15, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27518909

RESUMO

Pd3Bi2S2 and Pd3Bi2Se2 have been successfully prepared in the form of nanoparticles with diameters of ∼50 nm by microwave-assisted modified polyol synthesis at low temperatures. The composition and morphology of the samples have been studied by means of powder X-ray diffraction as well as electron microscopy methods, including X-ray intensity mapping on the nanoscale. Superconducting properties of the as-prepared samples have been characterized by electrical resistivity measurements down to low temperatures (∼0.2 K). Deviations from the bulk metallic behavior originating from the submicrometer nature of the samples were registered for both phases. A significant critical-field enhancement up to 1.4 T, i.e., 4 times higher than the value of the bulk material, has been revealed for Pd3Bi2Se2. At the same time, the critical temperature is suppressed to 0.7 K from the bulk value of ∼1 K. A superconducting transition at 0.4 K has been observed in nanocrystalline Pd3Bi2S2. Here, a zero-temperature upper critical field of ∼0.5 T has been estimated. Further, spark plasma-sintered Pd3Bi2S2 and Pd3Bi2Se2 samples have been investigated. Their superconducting properties are found to lie between those of the bulk and nanosized samples.

6.
Dalton Trans ; 50(48): 18143-18154, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34854436

RESUMO

We report the synthesis, crystal structure and magnetic properties of the new heptacoordinated mononuclear erbium(III) complex (Et3NH)[Er(H2DAPS)Cl2] (H4DAPS = 2,6-diacetylpyridine bis-(salicylhydrazone)) (1). The coordination polyhedron around the Er(III) ion features a slightly distorted pentagonal bipyramid formed by the pentagonal N3O2 chelate ring of the H2DAPS ligand in the equatorial plane and two apical chloride ligands. Detailed high-frequency/high-field electron paramagnetic resonance (HF-EPR) studies of 1 result in the precise determination of the crystal field (CF) splitting energies (0, 290 and 460 GHz) and effective g-values of the three lowest Kramers doublets (KDs) of the Er(III) ion. The obtained HF-EPR data are in good agreement with the results from CF analysis for the Er(III) ion based on the simulation of the dc magnetic data of 1. The results from dynamic susceptibility measurements indicate that there is no slow relaxation of magnetisation behaviour. This observation is discussed in terms of the electronic structure of 1 obtained from experimental and theoretical results.

7.
Dalton Trans ; 49(43): 15287-15298, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112327

RESUMO

A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA