RESUMO
The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.
Assuntos
Cervos , Encefalopatia Espongiforme Bovina , Doença de Emaciação Crônica , Animais , Noruega , Western Blotting/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Príons/metabolismo , Bovinos , Imuno-Histoquímica/veterinária , Proteínas PrPSc/metabolismoRESUMO
Prion diseases are fatal neurodegenerative conditions of humans and various vertebrate species that are transmissible between individuals of the same or different species. A novel infectious moiety referred to as a prion is considered responsible for transmission of these conditions. Prion replication is believed to be the cause of the neurotoxicity that arises during prion disease pathogenesis. The prion hypothesis predicts that the transmissible prion agent consists of PrPSc, which is comprised of aggregated misfolded conformers of the normal host protein PrPC. It is important to understand the biology of transmissible prions and to identify genetic modifiers of prion-induced neurotoxicity. This information will underpin the development of therapeutic and control strategies for human and animal prion diseases. The most reliable method to detect prion infectivity is by in vivo transmission in a suitable experimental host, which to date have been mammalian species. Current prion bioassays are slow, cumbersome and relatively insensitive to low titres of prion infectivity, and do not lend themselves to rapid genetic analysis of prion disease. Here, we provide an overview of our novel studies that have led to the establishment of Drosophila melanogaster, a genetically well-defined invertebrate host, as a sensitive, versatile and economically viable animal model for the detection of mammalian prion infectivity and genetic modifiers of prion-induced toxicity.
Assuntos
Doenças Priônicas , Príons , Animais , Humanos , Drosophila , Drosophila melanogaster/genética , Animais Geneticamente Modificados , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo , Mamíferos/metabolismoRESUMO
Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
Assuntos
Doenças dos Bovinos , Encefalopatia Espongiforme Bovina , Príons , Scrapie , Doenças dos Ovinos , Ovinos , Animais , Bovinos , Camundongos , Scrapie/metabolismo , Príons/genética , Encefalopatia Espongiforme Bovina/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Doenças dos Bovinos/metabolismo , Doenças dos Ovinos/diagnósticoRESUMO
Prions are transmissible protein pathogens most reliably detected by a bioassay in a suitable host, typically mice. However, the mouse bioassay is slow and cumbersome, and relatively insensitive to low titers of prion infectivity. Prions can be detected biochemically in vitro by the protein misfolding cyclic amplification (PMCA) technique, which amplifies disease-associated prion protein but does not detect bona fide prion infectivity. Here, we demonstrate that Drosophila transgenic for bovine prion protein (PrP) expression can serve as a model system for the detection of bovine prions significantly more efficiently than either the mouse prion bioassay or PMCA. Strikingly, bovine PrP transgenic Drosophila could detect bovine prion infectivity in the region of a 10-12 dilution of classical bovine spongiform encephalopathy (BSE) inoculum, which is 106-fold more sensitive than that achieved by the bovine PrP mouse bioassay. A similar level of sensitivity was observed in the detection of H-type and L-type atypical BSE and sheep-passaged BSE by bovine PrP transgenic Drosophila. Bioassays of bovine prions in Drosophila were performed within 7 weeks, whereas the mouse prion bioassay required at least a year to assess the same inoculum. In addition, bovine PrP transgenic Drosophila could detect classical BSE at a level 105-fold lower than that achieved by PMCA. These data show that PrP transgenic Drosophila represent a new tractable prion bioassay for the efficient and sensitive detection of mammalian prions, including those of known zoonotic potential.
Assuntos
Bioensaio/métodos , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Proteínas Priônicas/metabolismo , Príons/metabolismo , Animais , Animais Geneticamente Modificados , Bovinos , Drosophila/genética , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Modelos TeóricosRESUMO
Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrPSc) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited. A European-wide study is presented concerning the biochemical phenotypes of the protease resistant fraction of PrPSc (PrPres) in over thirty brain isolates from transmissible spongiform encephalopathy (TSE) affected goats collected in seven countries. Three different scrapie forms were found: classical scrapie (CS), Nor98/atypical scrapie and one case of CH1641 scrapie. In addition, CS was found in two variants-CS-1 and CS-2 (mainly Italy)-which differed in proteolytic resistance of the PrPres N-terminus. Suitable PrPres markers for discriminating CH1641 from BSE (C-type) appeared to be glycoprofile pattern, presence of two triplets instead of one, and structural (in)stability of its core amino acid region. None of the samples exhibited BSE like features. BSE and these four scrapie types, of which CS-2 is new, can be recognized in goats with combinations of a set of nine biochemical parameters.
Assuntos
Western Blotting/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/classificação , Scrapie/classificação , Animais , Western Blotting/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Europa (Continente) , Doenças das Cabras/diagnóstico , Cabras , Scrapie/diagnósticoRESUMO
BACKGROUND: Oral vaccination with Mycobacterium bovis Bacille of Calmette and Guerin (BCG) has provided protection against M. bovis to badgers both experimentally and in the field. There is also evidence suggesting that the persistence of live BCG within the host is important for maintaining protection against TB. Here we investigated the capacity of badger inductive mucosal sites to absorb and maintain live BCG. The targeted mucosae were the oropharyngeal cavity (tonsils and sublingual area) and the small intestine (ileum). RESULTS: We showed that significant quantities of live BCG persisted within badger in tissues of vaccinated badgers for at least 8 weeks following oral vaccination with only very mild pathological features and induced the circulation of IFNγ-producing mononuclear cells. The uptake of live BCG by tonsils and drainage to retro-pharyngeal lymph nodes was repeatable in the animal group vaccinated by oropharyngeal instillation whereas those vaccinated directly in the ileum displayed a lower frequency of BCG detection in the enteric wall or draining mesenteric lymph nodes. No faecal excretion of live BCG was observed, including when BCG was delivered directly in the ileum. CONCLUSIONS: The apparent local loss of BCG viability suggests an unfavorable gastro-enteric environment for BCG in badgers, which should be taken in consideration when developing an oral vaccine for use in this species.
Assuntos
Administração Oral , Vacina BCG/administração & dosagem , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Animais , Vacina BCG/imunologia , Preparações de Ação Retardada , Fezes/microbiologia , Feminino , Íleo/microbiologia , Interferon gama/metabolismo , Linfonodos/microbiologia , Mycobacterium bovis/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Tuberculose/veterinária , Vacinação/veterináriaRESUMO
This report presents the results of experimental challenges of goats with scrapie by both the intracerebral (i.c.) and oral routes, exploring the effects of polymorphisms at codon 146 of the goat PRNP gene on resistance to disease. The results of these studies illustrate that while goats of all genotypes can be infected by i.c. challenge, the survival distribution of the animals homozygous for asparagine at codon 146 was significantly shorter than those of animals of all other genotypes (chi-square value, 10.8; P = 0.001). In contrast, only those animals homozygous for asparagine at codon 146 (NN animals) succumbed to oral challenge. The results also indicate that any cases of infection in non-NN animals can be detected by the current confirmatory test (immunohistochemistry), although successful detection with the rapid enzyme-linked immunosorbent assay (ELISA) was more variable and dependent on the polymorphism. Together with data from previous studies of goats exposed to infection in the field, these data support the previously reported observations that polymorphisms at this codon have a profound effect on susceptibility to disease. It is concluded that only animals homozygous for asparagine at codon 146 succumb to scrapie under natural conditions.IMPORTANCE In goats, like in sheep, there are PRNP polymorphisms that are associated with susceptibility or resistance to scrapie. However, in contrast to the polymorphisms in sheep, they are more numerous in goats and may be restricted to certain breeds or geographical regions. Therefore, eradication programs must be specifically designed depending on the identification of suitable polymorphisms. An initial analysis of surveillance data suggested that such a polymorphism in Cypriot goats may lie in codon 146. In this study, we demonstrate experimentally that NN animals are highly susceptible after i.c. inoculation. The presence of a D or S residue prolonged incubation periods significantly, and prions were detected in peripheral tissues only in NN animals. In oral challenges, prions were detected only in NN animals, and the presence of a D or S residue at this position conferred resistance to the disease. This study provides an experimental transmission model for assessing the genetic susceptibility of goats to scrapie.
Assuntos
Substituição de Aminoácidos , Códon , Predisposição Genética para Doença , Cabras/genética , Polimorfismo Genético , Proteínas Priônicas/genética , Scrapie/genética , AnimaisRESUMO
Apart from prion protein genotype, the factors determining the host range and susceptiblity for specific transmissible spongiform encephalopathy agents remain unclear. It is known that bovine atypical L-BSE can transmit to a range of species including primates and humanised transgenic mice. It is important, therefore, that there is as broad an understanding as possible of how such isolates might present in food animal species and how robust they are on inter- and intra-species transmission to inform surveillance sytems and risk assessments. This paper demonstrates that L-BSE can be intracerebrally transmitted to sheep of several genotypes, with the exception of ARR/ARR animals. Positive animals mostly present with a cataplectic form of disease characterized by collapsing episodes and reduced muscle tone. PrP accumulation is confined to the nervous system, with the exception of one animal with lymphoreticular involvement. In Western blot there was maintenance of the low molecular mass and glycoform profile associated with L-BSE, irrespective of ovine host genotype, but there was a substantially higher N-terminal antibody signal relative to the core-specific antibody, which is similar to the ratio associated with classical scrapie. The disease phenotype was maintained on experimental subpassage, but with a shortened survival time indicative of an original species barrier and subsequent adaptation. Passive surveillance approaches would be unlikely to identify such cases as TSE suspects, but current statutory active screening methods would be capable of detecting such cases and classifying them as unusual and requiring further investigation if they were to occur in the field.
Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Doenças dos Ovinos/transmissão , Animais , Western Blotting/veterinária , Encéfalo/patologia , Bovinos , Encefalopatia Espongiforme Bovina/diagnóstico , Encefalopatia Espongiforme Bovina/patologia , Ensaio de Imunoadsorção Enzimática/veterinária , Fenótipo , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/mortalidade , Doenças dos Ovinos/patologiaRESUMO
Classical scrapie is one of the transmissible spongiform encephalopathies (TSEs), a group of fatal infectious diseases that affect the central nervous system (CNS). Classical scrapie can transmit laterally from ewe to lamb perinatally or between adult animals. Here we report detection of infectivity in tissues of an unborn fetus, providing evidence that in utero transmission of classical scrapie is also possible.
Assuntos
Doenças Fetais/veterinária , Transmissão Vertical de Doenças Infecciosas , Scrapie/transmissão , Útero/metabolismo , Animais , Feminino , Doenças Fetais/metabolismo , Proteínas PrPSc/metabolismo , Scrapie/diagnóstico , Scrapie/metabolismo , OvinosRESUMO
Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer.
Assuntos
Cervos/metabolismo , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/metabolismo , Camundongos , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Animais , Bovinos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/patologia , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Masculino , Camundongos Transgênicos , Especificidade da Espécie , Doença de Emaciação Crônica/patologia , Doença de Emaciação Crônica/transmissãoRESUMO
Ovine scrapie can be transmitted via environmental reservoirs. A pool of ovine scrapie isolates were incubated on soil for one day or thirteen months and eluted prion was used to challenge tg338 mice transgenic for ovine PrP. After one-day incubation on soil, two PrP(Sc) phenotypes were present: G338 or Apl338ii. Thirteen months later some divergent PrP(Sc) phenotypes were seen: a mixture of Apl338ii with either G338 or P338, and a completely novel PrP(Sc) deposition, designated Cag338. The data show that prolonged ageing of scrapie prions within an environmental matrix may result in changes in the dominant PrP(Sc) biological/biochemical properties.
Assuntos
Reservatórios de Doenças/veterinária , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Animais , Animais Geneticamente Modificados , Camundongos , Ovinos , SoloRESUMO
Atypical scrapie is a transmissible spongiform encephalopathy that is rarely diagnosed in living animals. In March 2022, a 7-y-old Herdwick ewe was referred to the Scottish Centre for Production Animal Health and Food Safety because of circling behavior and ill thrift. The ewe had a low body condition score, was obtunded, with a wide-based stance of the pelvic limbs, and was circling to the left. Hematologic, biochemical, and CSF analyses were unremarkable, but postmortem magnetic resonance imaging (MRI) findings were consistent with diffuse, bilateral, and symmetrical atrophy of the forebrain and ventriculomegaly. The clinical signs, the involvement of an individual older ewe, and the MRI results led to the clinical diagnosis of scrapie. Immunohistochemistry on the fixed brain, performed by the U.K. Animal and Plant Health Agency, revealed deposits of PrPSc, which is a specific disease marker of transmissible spongiform encephalopathies, mainly in the cerebellum and at lower concentrations in the cerebrum and obex, consistent with the diagnosis of atypical scrapie. MRI findings in a sheep with atypical scrapie have not been described previously, to our knowledge. Scrapie should be included in the list of clinical differential diagnoses when veterinarians are presented with sheep with progressive neurologic signs of several weeks' duration.
Assuntos
Imageamento por Ressonância Magnética , Scrapie , Animais , Ovinos , Imageamento por Ressonância Magnética/veterinária , Feminino , Scrapie/patologia , Scrapie/diagnóstico , Encéfalo/patologia , Encéfalo/diagnóstico por imagemRESUMO
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
RESUMO
Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.
Assuntos
Expressão Gênica , Príons/genética , Scrapie/genética , Scrapie/transmissão , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Humanos , Camundongos , Camundongos Transgênicos , Príons/metabolismo , Ovinos , Especificidade da EspécieRESUMO
Development of transgenic mouse models expressing heterologous prion protein (PrP) has facilitated and advanced in vivo studies of prion diseases affecting humans and animals. Here, novel transgenic mouse lines expressing a chimaeric murine/ovine (Mu/Ov) PrP transgene, including amino acid residues alanine, histidine and glutamine at ovine polymorphic codons 136, 154 and 171 (A136H154Q171), were generated to provide a means of assessing the susceptibility of the ovine AHQ allele to ruminant prion diseases in an in vivo model. Transmission studies showed that the highest level of transgene overexpression, in Tg(Mu/OvPrP(AHQ))EM16 (EM16) mice, conferred high susceptibility to ruminant prions. Highly efficient primary transmission of atypical scrapie from sheep was shown, irrespective of donor sheep PrP genotype, with mean incubation periods (IPs) of 154178 days post-inoculation (p.i.), 100% disease penetrance and early Western blot detection of protease-resistant fragments (PrP(res)) of the disease-associated isoform, PrP(Sc), in EM16 brain from 110 days p.i. onwards. EM16 mice were also highly susceptible to classical scrapie and bovine spongiform encephalopathy (BSE), with mean IPs 320 and 246 days faster, respectively, than WT mice. Primary passage of atypical scrapie, classical scrapie and BSE showed that the PrP(res) profiles associated with disease in the natural host were faithfully maintained in EM16 mice, and were distinguishable based on molecular masses, antibody reactivities and glycoform percentages. Immunohistochemistry was used to confirm PrP(Sc) deposition in brain sections from terminal phase transmissible spongiform encephalopathy-challenged EM16 mice. The findings indicate that EM16 mice represent a suitable bioassay model for detection of atypical scrapie infectivity and offer the prospect of differentiation of ruminant prions.
Assuntos
Camundongos Transgênicos/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/transmissão , Príons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ruminantes/metabolismo , Regulação para Cima , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Humanos , Camundongos , Príons/genética , Proteínas Recombinantes de Fusão/genética , Ruminantes/genética , Scrapie/metabolismo , Scrapie/transmissão , Ovinos , TransgenesRESUMO
Preclinical sheep with the highly scrapie-susceptible VRQ/VRQ PRNP genotype secrete prions from the oral cavity. In order to further understand the significance of orally available prions, buccal swabs were taken from sheep with a range of PRNP genotypes and analyzed by serial protein misfolding cyclic amplification (sPMCA). Prions were detected in buccal swabs from scrapie-exposed sheep of genotypes linked to high (VRQ/VRQ and ARQ/VRQ) and low (ARR/VRQ and AHQ/VRQ) lymphoreticular system involvement in scrapie pathogenesis. For both groups, the level of prion detection was significantly higher than that for scrapie-resistant ARR/ARR sheep which were kept in the same farm environment and acted as sentinel controls for prions derived from the environment which might contaminate the oral cavity. In addition, sheep with no exposure to the scrapie agent did not contain any measurable prions within the oral cavity. Furthermore, prions were detected in sheep over a wide age range representing various stages of preclinical disease. These data demonstrate that orally available scrapie prions may be a common feature in sheep incubating scrapie, regardless of the PRNP genotype and any associated high-level accumulation of PrP(Sc) within lymphoreticular tissues. PrP(Sc) was present in buccal swabs from a large proportion of sheep with PRNP genotypes associated with relatively low disease penetrance, indicating that subclinical scrapie infection is likely to be a common occurrence. The significance of positive sPMCA reactions was confirmed by the transmission of infectivity in buccal swab extracts to Tg338 mice, illustrating the likely importance of orally available prions in the horizontal transmission of scrapie.
Assuntos
Boca/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Ovinos/genética , Animais , Feminino , Predisposição Genética para Doença , Genótipo , Sistema Linfático/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Scrapie/genética , Scrapie/transmissão , Ovinos/metabolismoRESUMO
Mouse-adapted transmissible spongiform encephalopathy (TSE) strains are routinely distinguished based on reproducible disease characteristics in a given mouse line following inoculation via a consistent route. We investigated whether different administration routes (oral, intragastric (i.g.) and intracerebral (i.c.)) can alter the disease characteristics in IM mice after serial dilution of a stabilized mouse-adapted bovine spongiform encephalopathy (BSE) strain (301V). In addition, the infectivity of distal ileum and mesenteric lymph nodes (ln) sampled at three time points (35 days postinoculation (dpi), 70 dpi and terminal disease) after i.g. inoculation of 301V strain was assessed in mice by i.c. challenge. Strain characteristics were assessed according to standard methodology and PrP(Sc) immunohistochemistry deposition patterns. Mean incubation periods were prolonged following oral or i.g. inoculations compared to the i.c. route. Lesion profiles following i.c. challenges were elevated compared to i.g. and oral routes although vacuolation in the dorsal medulla was consistently high irrespective of the route of administration. Nevertheless, the same PrP(Sc) deposition pattern was associated with each route of administration. Distal and mesenteric ln infectivity was detected as early as 35 dpi and displayed consistent lesion profiles and PrP(Sc) deposition patterns. Our data suggest that although 301V retained its properties, some phenotypic parameters were affected by the route of inoculation. We conclude that bioassay data should be interpreted carefully and should be standardized for route of inoculation.
Assuntos
Encefalopatia Espongiforme Bovina/patologia , Encefalopatia Espongiforme Bovina/transmissão , Príons/administração & dosagem , Príons/patogenicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/metabolismo , Íleo/metabolismo , Íleo/patologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos , Proteínas PrPSc/metabolismo , Fatores de TempoRESUMO
It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (106·5 to 106·7 LD50 g⻹) and five gave 'high titres' (108·¹ to ≥ 108·7 LD50 g⻹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).
Assuntos
Encefalopatia Espongiforme Bovina , Príons/genética , Príons/patogenicidade , Scrapie , Animais , Bioensaio/métodos , Encéfalo , Bovinos , Feminino , Imuno-Histoquímica , Masculino , Camundongos , OvinosRESUMO
Mouse bioassay can be readily employed for strain typing of naturally occurring transmissible spongiform encephalopathy cases. Classical scrapie strains have been characterised historically based on the established methodology of assessing incubation period of disease and the distribution of disease-specific vacuolation across the brain following strain stabilisation in a given mouse line. More recent research has shown that additional methods could be used to characterise strains and thereby expand the definition of strain "phenotype". Here we present the phenotypic characteristics of classical scrapie strains isolated from 24 UK ovine field cases through the wild-type mouse bioassay. PrPSc immunohistochemistry (IHC), paraffin embedded tissue blots (PET-blot) and Western blotting approaches were used to determine the neuroanatomical distribution and molecular profile of PrPSc associated with each strain, in conjunction with traditional methodologies. Results revealed three strains isolated through each mouse line, including a previously unidentified strain. Moreover IHC and PET-blot methodologies were effective in characterising the strain-associated types and neuroanatomical locations of PrPSc. The use of Western blotting as a parameter to define classical scrapie strains was limited. These data provide a comprehensive description of classical scrapie strain phenotypes on isolation through the mouse bioassay that can provide a reference for further scrapie strain identification.
Assuntos
Bioensaio/métodos , Proteínas PrPSc/classificação , Scrapie/metabolismo , Animais , Western Blotting/métodos , Encéfalo/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Tipagem Molecular/métodos , Inclusão em Parafina/métodos , Proteínas PrPSc/genética , Scrapie/genética , OvinosRESUMO
In individual animals affected by transmissible spongiform encephalopathies, different disease phenotypes can be identified which are attributed to different strains of the agent. In the absence of reliable technology to fully characterise the agent, classification of disease phenotype has been used as a strain typing tool which can be applied in any host. This approach uses standardised data on biological parameters, established for a single host, to allow comparison of different prion sources. Traditionally prion strain characterisation in wild type mice is based on incubation periods and lesion profiles after the stabilisation of the agent into the new host which requires serial passages. Such analysis can take many years, due to prolonged incubation periods. The current study demonstrates that the PrPSc patterns produced by one serial passage in wild type mice of bovine or ovine BSE were consistent, stable and showed minimal and predictable differences from mouse-stabilised reference strains. This biological property makes PrPSc deposition pattern mapping a powerful tool in the identification and definition of TSE strains on primary isolation, making the process of characterisation faster and cheaper than a serial passage protocol. It can be applied to individual mice and therefore it is better suited to identify strain diversity within single inocula in case of co-infections or identify strains in cases where insufficient mice succumb to disease for robust lesion profiles to be constructed. The detailed description presented in this study provides a reference document for identifying BSE in wild type mice.