RESUMO
Pain at the tip of the stem of a knee prosthesis (End-of-Stem Pain) is a common problem in revision total knee arthroplasty (TKA). It may be caused by a problematic interaction between stem and bone, but the exact biomechanical correlate is still unknown. On top of this, there is no biomechanical study investigating End-of-Stem Pain at the distal femur using human specimens. Aim of this study was to find out whether the implantation of a revision total knee implant leads to high femoral surface strains at the tip of the stem, which the authors expect to be the biomechanical correlate of End-of-Stem Pain. We implanted 16 rotating hinge knee implants into 16 fresh-frozen human femora using the hybrid fixation technique and comparing two reaming protocols. Afterwards, surface strains on these femora were measured under dynamic load in two different load scenarios (climbing stairs and chair rising) using digital image correlation (DIC) and fracture patterns after overcritical load were analysed. Peak surface strains were found at the tip of the stem in several measurements in both load scenarios. There were no significant differences between the two compared groups (different trial sizes) regarding surface strains and fracture patterns. We conclude that implantation of a long intramedullary stem in revision TKA can lead to high surface strains at the tip of the stem that may be the correlate of femoral End-of-Stem Pain. This finding might allow for a targeted development of future stem designs that can lead to lower surface strains and therefore might reduce End-of-Stem Pain. Digital Image Correlation proved valid for the measurement of surface strains and can be used in the future to test new stem designs in vitro.
Assuntos
Artroplastia do Joelho , Fêmur , Humanos , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Fêmur/cirurgia , Prótese do Joelho/efeitos adversos , Idoso , Feminino , Reoperação , Masculino , Estresse Mecânico , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Idoso de 80 Anos ou maisRESUMO
End-of-stem pain of the femur is a common problem in revision total knee arthroplasty (TKA). It may be caused by a problematic interaction between stem and bone, but the exact biomechanical correlate is still unknown. The aim of this prospective study was to find out how the stem is positioned in the medullary canal, how the femoral geometry changes due to implantation, and whether the results are influenced by the diameter of the trial. We implanted 16 rotating hinge knee implants into 16 fresh-frozen human femora using the hybrid fixation technique and comparing two reaming protocols. We created 3-dimensional models of the specimens before and after implantation using CT-scans and calculated the differences. The main contact between stem and bone was found at the proximal 30 mm of the stem, especially anterior. We observed two different contact patterns of stem and bone. The cortical thickness was reduced especially at the anterior tip of the stem with a maximum reduction of 1405 ± 501 µm in the standard group and 980 ± 447 µm in the small_trial group, which is a relative reduction of 34 ± 14% (standard group) and 26 ± 14% (small_trial group). The bone experienced a deformation to posterior and lateral. We conclude that the tip of the stem is an important biomechanical region. Different contact patterns between stem and bone as well as the reduction in cortical thickness at the tip of the stem may play a role in the development of end-of-stem pain.