Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(19): 11353-11363, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478645

RESUMO

A 2D-liquid chromatographic fractionation method was combined with direct infusion electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry to better resolve the high complexity of the organic material in atmospheric particles. The number of assigned molecular formulas increased by a factor of 2.3 for the fractionated sample (18 144) compared to a bulk sample analysis without fractionation (7819), while simultaneously allowing the identification of 71 240 isomeric compounds. Accounting for these isomers has an impact on the means and distributions of different descriptive sample parameters. More than 15 000 compounds were exclusively identified in the fractionated sample providing insights regarding the formation of organosulfates, reduced N-containing compounds, and polyaromatic compounds. Further, a new method for assigning organonitrates and poly-organonitrates based on Kendrick mass defect analysis is presented. The current study implicates that analytical separation leads to much more detailed insights into particle organics composition, while more commonly applied direct infusion MS studies can strongly underestimate composition complexity and lead to biased assignments of bulk organic properties. Overall, the particle organics composition is far more complex than previously shown, while separation through better chromatographic techniques helps to understand formation processes of atmospheric particle constituents.


Assuntos
Fracionamento Químico , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida , Espectrometria de Massas
2.
Environ Sci Technol ; 51(9): 5061-5070, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28333457

RESUMO

Organic carbon in atmospheric particles comprises a large fraction of chromatographically unresolved compounds, often referred to as humic-like substances (HULIS), which influence particle properties and impact climate, human health, and ecosystems. To better understand its composition, a two-dimensional (2D) offline method combining size-exclusion (SEC) and reversed-phase liquid chromatography (RP-HPLC) using a new spiked gradient profile is presented. It separates HULIS into 55 fractions of different size and polarity, with estimated ranges of molecular weight and octanol/water partitioning coefficient (log P) from 160-900 g/mol and 0.2-3.3, respectively. The distribution of HULIS within the 2D size versus polarity space is illustrated with heat maps of ultraviolet absorption at 254 nm. It is found to strongly differ in a small example set of samples from a background site near Leipzig, Germany. In winter, the most intense signals were obtained for the largest molecules (>520 g/mol) with low polarity (log P ∼ 1.9), whereas in summer, smaller (225-330 g/mol) and more polar (log P ∼ 0.55) molecules dominate. The method reveals such differences in HULIS composition in a more detailed manner than previously possible and can therefore help to better elucidate the sources of HULIS in different seasons or at different sites. Analyzing Suwannee river fulvic acid as a common HULIS surrogate shows a similar polarity range, but the sizes are clearly larger than those of atmospheric HULIS.


Assuntos
Aerossóis , Substâncias Húmicas , Carbono , Rios , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA