Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2216522120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279274

RESUMO

During infections with the malaria parasites Plasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al., Science 368, 746-753 (2020); Smith et al., Science 368, 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium , Humanos , Camundongos , Animais , Interações Hospedeiro-Parasita , Malária/parasitologia , Plasmodium/genética
2.
Malar J ; 23(1): 106, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632607

RESUMO

BACKGROUND: To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS: The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS: Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS: This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.


Assuntos
Atovaquona , Vacinas Antimaláricas , Plasmodium cynomolgi , Proguanil , Animais , Primaquina/uso terapêutico , Esporozoítos , Macaca mulatta , Imunização , Quimioprevenção , Linfócitos T CD8-Positivos , Combinação de Medicamentos
3.
Malar J ; 22(1): 52, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782196

RESUMO

BACKGROUND: Estimating malaria risk associated with work locations and travel across a region provides local health officials with information useful to mitigate possible transmission paths of malaria as well as understand the risk of exposure for local populations. This study investigates malaria exposure risk by analysing the spatial pattern of malaria cases (primarily Plasmodium vivax) in Ubon Ratchathani and Sisaket provinces of Thailand, using an ecological niche model and machine learning to estimate the species distribution of P. vivax malaria and compare the resulting niche areas with occupation type, work locations, and work-related travel routes. METHODS: A maximum entropy model was trained to estimate the distribution of P. vivax malaria for a period between January 2019 and April 2020, capturing estimated malaria occurrence for these provinces. A random simulation workflow was developed to make region-based case data usable for the machine learning approach. This workflow was used to generate a probability surface for the ecological niche regions. The resulting niche regions were analysed by occupation type, home and work locations, and work-related travel routes to determine the relationship between these variables and malaria occurrence. A one-way analysis of variance (ANOVA) test was used to understand the relationship between predicted malaria occurrence and occupation type. RESULTS: The MaxEnt (full name) model indicated a higher occurrence of P. vivax malaria in forested areas especially along the Thailand-Cambodia border. The ANOVA results showed a statistically significant difference between average malaria risk values predicted from the ecological niche model for rubber plantation workers and farmers, the two main occupation groups in the study. The rubber plantation workers were found to be at higher risk of exposure to malaria than farmers in Ubon Ratchathani and Sisaket provinces of Thailand. CONCLUSION: The results from this study point to occupation-related factors such as work location and the routes travelled to work, being risk factors in malaria occurrence and possible contributors to transmission among local populations.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Malária Vivax/epidemiologia , Tailândia/epidemiologia , Entropia , Borracha , Malária/epidemiologia , Plasmodium vivax , Viagem , Fatores de Risco , Malária Falciparum/epidemiologia
4.
Antimicrob Agents Chemother ; 66(3): e0182121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34978892

RESUMO

The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for the clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6-orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6-orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for Plasmodium vivax infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except for one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma primaquine (PQ) area under the curve (AUC) was lower in the NM group (460 h*ng/mL) compared to the IM group (561 h*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6-orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6-orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (Tmax) at 4 h. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6-orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.


Assuntos
Antimaláricos , Malária Vivax , Adulto , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Povo Asiático , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Humanos , Malária Vivax/tratamento farmacológico , Plasmodium vivax/genética , Primaquina/análogos & derivados , Primaquina/farmacocinética , Primaquina/uso terapêutico
5.
Malar J ; 21(1): 142, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524255

RESUMO

BACKGROUND: While human cases of Plasmodium knowlesi are now regularly recognized in Southeast Asia, infections with other simian malaria species, such as Plasmodium cynomolgi, are still rare. There has been a handful of clinical cases described, all from Malaysia, and retrospective studies of archived blood samples in Thailand and Cambodia have discovered the presence P. cynomolgi in isolates using polymerase chain reaction (PCR) assays. CASE PRESENTATION: In Thailand, an ongoing malaria surveillance study enrolled two patients from Yala Province diagnosed with Plasmodium vivax by blood smear, but who were subsequently found to be negative by PCR. Expanded PCR testing of these isolates detected mono-infection with P. cynomolgi, the first time this has been reported in Thailand. Upon re-testing of 60 isolates collected from Yala, one other case was identified, a co-infection of P. cynomolgi and P. vivax. The clinical course for all three was relatively mild, with symptoms commonly seen in malaria: fever, chills and headaches. All infections were cured with a course of chloroquine and primaquine. CONCLUSION: In malaria-endemic areas with macaque populations, cases of simian malaria in humans are being reported at an increasing rate, although still comprise a very small percentage of total cases. Plasmodium cynomolgi and P. vivax are challenging to distinguish by blood smear; therefore, PCR can be employed when infections are suspected or as part of systematic malaria surveillance. As Thai MoPH policy schedules regular follow-up visits after each malaria infection, identifying those with P. cynomolgi will allow for monitoring of treatment efficacy, although at this time P. cynomolgi appears to have an uncomplicated clinical course and good response to commonly used anti-malarials.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium cynomolgi , Plasmodium knowlesi , Animais , Humanos , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Estudos Retrospectivos , Tailândia/epidemiologia
6.
J Infect Dis ; 224(6): 1077-1085, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528566

RESUMO

BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.


Assuntos
Antimaláricos/farmacologia , Biomarcadores/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Piperazinas/uso terapêutico , Proteínas de Protozoários/genética , Quinolinas/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Camboja/epidemiologia , Resistência a Medicamentos/efeitos dos fármacos , Malária Falciparum/epidemiologia , Mefloquina/uso terapêutico , Mutação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Prevalência , Reação em Cadeia da Polimerase em Tempo Real
7.
Artigo em Inglês | MEDLINE | ID: mdl-33361308

RESUMO

Atovaquone-proguanil remains effective against multidrug-resistant Plasmodium falciparum in Southeast Asia, but resistance is mediated by a single point mutation in cytochrome b (cytb) that can arise during treatment. Among 14 atovaquone-proguanil treatment failures in a clinical trial in Cambodia, only one recrudescence harbored the cytb mutation Y268C. Deep sequencing did not detect the mutation at baseline or in the first 3 days of treatment, suggesting that it arose de novo Further sequencing across cytb similarly found no low-frequency cytb mutations that were up-selected from baseline to recrudescence. Copy number amplification in dihydroorotate dehydrogenase (DHODH) and cytb as markers of atovaquone tolerance was also absent. Cytb mutation played a minor role in atovaquone-proguanil treatment failures in an active comparator clinical trial.


Assuntos
Antimaláricos , Malária Falciparum , Naftoquinonas , Antimaláricos/uso terapêutico , Atovaquona/uso terapêutico , Camboja , Citocromos b/genética , Combinação de Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Naftoquinonas/uso terapêutico , Plasmodium falciparum/genética , Proguanil/uso terapêutico
8.
Malar J ; 20(1): 458, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876133

RESUMO

BACKGROUND: In April 2017, the Thai Ministry of Public Health (MoPH) was alerted to a potential malaria outbreak among civilians and military personnel in Sisaket Province, a highly forested area bordering Cambodia. The objective of this study was to present findings from the joint civilian-military outbreak response. METHODS: A mixed-methods approach was used to assess risk factors among cases reported during the 2017 Sisaket malaria outbreak. Routine malaria surveillance data from January 2013 to March 2018 obtained from public and military medical reporting systems and key informant interviews (KIIs) (n = 72) were used to develop hypotheses about potential factors contributing to the outbreak. Joint civilian-military response activities included entomological surveys, mass screen and treat (MSAT) and vector control campaigns, and scale-up of the "1-3-7" reactive case detection approach among civilians alongside a pilot "1-3-7" study conducted by the Royal Thai Army (RTA). RESULTS: Between May-July 2017, the monthly number of MoPH-reported cases surpassed the epidemic threshold. Outbreak cases detected through the MoPH mainly consisted of Thai males (87%), working as rubber tappers (62%) or military/border police (15%), and Plasmodium vivax infections (73%). Compared to cases from the previous year (May-July 2016), outbreak cases were more likely to be rubber tappers (OR = 14.89 [95% CI: 5.79-38.29]; p < 0.001) and infected with P. vivax (OR=2.32 [1.27-4.22]; p = 0.006). Themes from KIIs were congruent with findings from routine surveillance data. Though limited risk factor information was available from military cases, findings from RTA's "1-3-7" study indicated transmission was likely occurring outside military bases. Data from entomological surveys and MSAT campaigns support this hypothesis, as vectors were mostly exophagic and parasite prevalence from MSAT campaigns was very low (range: 0-0.7% by PCR/microscopy). CONCLUSIONS: In 2017, an outbreak of mainly P. vivax occurred in Sisaket Province, affecting mainly military and rubber tappers. Vector control use was limited to the home/military barracks, indicating that additional interventions were needed during high-risk forest travel periods. Importantly, this outbreak catalyzed joint civilian-military collaborations and integration of the RTA into the national malaria elimination strategy (NMES). The Sisaket outbreak response serves as an example of how civilian and military public health systems can collaborate to advance national malaria elimination goals in Southeast Asia and beyond.


Assuntos
Erradicação de Doenças/organização & administração , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Participação dos Interessados , Surtos de Doenças , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Militares/estatística & dados numéricos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Prevalência , Fatores de Risco , Tailândia/epidemiologia
9.
J Infect Dis ; 221(3): 428-437, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31549156

RESUMO

BACKGROUND: In Southeast Asia, people are often coinfected with different species of malaria (Plasmodium falciparum [Pf] and Plasmodium vivax [Pv]) as well as with multiple clones of the same species. Whether particular species or clones within mixed infections are more readily transmitted to mosquitoes remains unknown. METHODS: Laboratory-reared Anopheles dirus were fed on blood from 119 Pf-infected Cambodian adults, with 5950 dissected to evaluate for transmitted infection. Among 12 persons who infected mosquitoes, polymerase chain reaction and amplicon deep sequencing were used to track species and clone-specific transmission to mosquitoes. RESULTS: Seven of 12 persons that infected mosquitoes harbored mixed Pf/Pv infection. Among these 7 persons, all transmitted Pv with 2 transmitting both Pf and Pv, leading to Pf/Pv coinfection in 21% of infected mosquitoes. Up to 4 clones of each species were detected within persons. Shifts in clone frequency were detected during transmission. However, in general, all parasite clones in humans were transmitted to mosquitoes, with individual mosquitoes frequently carrying multiple transmitted clones. CONCLUSIONS: Malaria diversity in human hosts was maintained in the parasite populations recovered from mosquitoes fed on their blood. However, in persons with mixed Pf/Pv malaria, Pv appears to be transmitted more readily, in association with more prevalent patent gametocytemia.


Assuntos
Anopheles/parasitologia , Malária Falciparum/transmissão , Malária Vivax/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Adulto , Animais , Estudos de Coortes , Feminino , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase
11.
PLoS Med ; 17(5): e1003084, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407380

RESUMO

BACKGROUND: The radical cure of Plasmodium vivax and P. ovale requires treatment with primaquine or tafenoquine to clear dormant liver stages. Either drug can induce haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, necessitating screening. The reference diagnostic method for G6PD activity is ultraviolet (UV) spectrophotometry; however, a universal G6PD activity threshold above which these drugs can be safely administered is not yet defined. Our study aimed to quantify assay-based variation in G6PD spectrophotometry and to explore the diagnostic implications of applying a universal threshold. METHODS AND FINDINGS: Individual-level data were pooled from studies that used G6PD spectrophotometry. Studies were identified via PubMed search (25 April 2018) and unpublished contributions from contacted authors (PROSPERO: CRD42019121414). Studies were excluded if they assessed only individuals with known haematological conditions, were family studies, or had insufficient details. Studies of malaria patients were included but analysed separately. Included studies were assessed for risk of bias using an adapted form of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Repeatability and intra- and interlaboratory variability in G6PD activity measurements were compared between studies and pooled across the dataset. A universal threshold for G6PD deficiency was derived, and its diagnostic performance was compared to site-specific thresholds. Study participants (n = 15,811) were aged between 0 and 86 years, and 44.4% (7,083) were women. Median (range) activity of G6PD normal (G6PDn) control samples was 10.0 U/g Hb (6.3-14.0) for the Trinity assay and 8.3 U/g Hb (6.8-15.6) for the Randox assay. G6PD activity distributions varied significantly between studies. For the 13 studies that used the Trinity assay, the adjusted male median (AMM; a standardised metric of 100% G6PD activity) varied from 5.7 to 12.6 U/g Hb (p < 0.001). Assay precision varied between laboratories, as assessed by variance in control measurements (from 0.1 to 1.5 U/g Hb; p < 0.001) and study-wise mean coefficient of variation (CV) of replicate measures (from 1.6% to 14.9%; p < 0.001). A universal threshold of 100% G6PD activity was defined as 9.4 U/g Hb, yielding diagnostic thresholds of 6.6 U/g Hb (70% activity) and 2.8 U/g Hb (30% activity). These thresholds diagnosed individuals with less than 30% G6PD activity with study-wise sensitivity from 89% (95% CI: 81%-94%) to 100% (95% CI: 96%-100%) and specificity from 96% (95% CI: 89%-99%) to 100% (100%-100%). However, when considering intermediate deficiency (<70% G6PD activity), sensitivity fell to a minimum of 64% (95% CI: 52%-75%) and specificity to 35% (95% CI: 24%-46%). Our ability to identify underlying factors associated with study-level heterogeneity was limited by the lack of availability of covariate data and diverse study contexts and methodologies. CONCLUSIONS: Our findings indicate that there is substantial variation in G6PD measurements by spectrophotometry between sites. This is likely due to variability in laboratory methods, with possible contribution of unmeasured population factors. While an assay-specific, universal quantitative threshold offers robust diagnosis at the 30% level, inter-study variability impedes performance of universal thresholds at the 70% level. Caution is advised in comparing findings based on absolute G6PD activity measurements across studies. Novel handheld quantitative G6PD diagnostics may allow greater standardisation in the future.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Espectrofotometria , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Feminino , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
PLoS Med ; 17(11): e1003393, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211712

RESUMO

BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Vivax/tratamento farmacológico , Plasmodium vivax/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Adulto Jovem
13.
Malar J ; 19(1): 269, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711538

RESUMO

BACKGROUND: High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS: To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS: The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS: Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genótipo , Fenótipo , Plasmodium falciparum/genética , Quinolinas/farmacologia , Camboja , Marcadores Genéticos , Plasmodium falciparum/efeitos dos fármacos
14.
Int J Health Geogr ; 19(1): 13, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276636

RESUMO

BACKGROUND: Understanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam. METHODS: The optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns. RESULTS: Optimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns. CONCLUSIONS: Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.


Assuntos
Malária Falciparum , Plasmodium falciparum , Análise Espacial , Animais , Camboja/epidemiologia , Análise por Conglomerados , Sistemas de Informação Geográfica , Humanos , Malária Falciparum/epidemiologia , Tailândia/epidemiologia
15.
J Infect Dis ; 220(11): 1761-1770, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31549155

RESUMO

BACKGROUND: Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. METHODS: CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. RESULTS: Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. CONCLUSION: The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. CLINICAL TRIALS REGISTRATION: NCT02960568.


Assuntos
Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Primaquina/metabolismo , Administração Oral , Adolescente , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Militares , Fenótipo , Plasma/química , Primaquina/administração & dosagem , Primaquina/farmacocinética , Estados Unidos , Urinálise , Urina/química , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 113(50): E8096-E8105, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911780

RESUMO

Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P vivax and 80 P falciparum isolates collected between 2009 and 2013. We found that although P falciparum has undergone population fracturing, the coendemic P vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P falciparum, P vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P vivax and P falciparum parasites. Although population substructuring in P falciparum has resulted in clonal outgrowths of resistant parasites, P vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P vivax and achieve malaria elimination.


Assuntos
Malária Vivax/prevenção & controle , Malária Vivax/parasitologia , Plasmodium vivax/genética , Camboja/epidemiologia , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Resistência a Medicamentos/genética , Doenças Endêmicas/prevenção & controle , Variação Genética , Genoma de Protozoário , Haplótipos , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Especificidade da Espécie , Transcrição Gênica
17.
J Infect Dis ; 216(4): 468-476, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931241

RESUMO

Background: Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods: Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33716 genome-wide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin-piperaquine treatment outcomes in an independent dataset. Results: Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions: Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance.


Assuntos
Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Artemisininas/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Camboja , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Concentração Inibidora 50 , Desequilíbrio de Ligação , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Proteínas de Protozoários/metabolismo , Sensibilidade e Especificidade , Falha de Tratamento
18.
Artigo em Inglês | MEDLINE | ID: mdl-28193647

RESUMO

Despite the rising rates of resistance to dihydroartemisinin-piperaquine (DP), DP remains a first-line therapy for uncomplicated malaria in many parts of Cambodia. While DP is generally well tolerated as a 3-day DP (3DP) regimen, compressed 2-day DP (2DP) regimens were associated with treatment-limiting cardiac repolarization effects in a recent clinical trial. To better estimate the risks of piperaquine on QT interval prolongation, we pooled data from three randomized clinical trials conducted between 2010 and 2014 in northern Cambodia. A population pharmacokinetic model was developed to compare exposure-response relationships between the 2DP and 3DP regimens while accounting for differences in regimen and sample collection times between studies. A 2-compartment model with first-order absorption and elimination without covariates best fit the data. The linear slope-intercept model predicted a 0.05-ms QT prolongation per ng/ml of piperaquine (5 ms per 100 ng/ml) in this largely male population. Though the plasma half-life was similar in both regimens, peak and total piperaquine exposures were higher in those treated with the 2DP regimen. Furthermore, the correlation between the plasma piperaquine concentration and the QT interval prolongation was stronger in the population receiving the 2DP regimen. Neither the time since the previous meal nor the baseline serum magnesium or potassium levels had additive effects on QT interval prolongation. As electrocardiographic monitoring is often nonexistent in areas where malaria is endemic, 2DP regimens should be avoided and the 3DP regimen should be carefully considered in settings where viable alternative therapies exist. When DP is employed, the risk of cardiotoxicity can be mitigated by combining a 3-day regimen, enforcing a 3-h fast before and after administration, and avoiding the concomitant use of QT interval-prolonging medications. (This study used data from three clinical trials that are registered at ClinicalTrials.gov under identifiers NCT01280162, NCT01624337, and NCT01849640.).


Assuntos
Antimaláricos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Artemisininas/farmacocinética , Malária Falciparum/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Quinolinas/farmacocinética , Antimaláricos/uso terapêutico , Artemisininas/efeitos adversos , Artemisininas/uso terapêutico , Camboja , Cardiotoxicidade , Quimioterapia Combinada , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Contração Miocárdica/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/sangue , Quinolinas/uso terapêutico
19.
Malar J ; 16(1): 392, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28964258

RESUMO

BACKGROUND: While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013-2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. RESULTS: Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013-4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. CONCLUSION: The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Microscopia/métodos , Plasmodium vivax/efeitos dos fármacos , Camboja , Variações do Número de Cópias de DNA , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esquizontes/crescimento & desenvolvimento
20.
J Immunol ; 195(9): 4378-86, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26408671

RESUMO

Studies of influenza-specific immune responses in humans have largely assessed systemic responses involving serum Ab and peripheral blood T cell responses. However, recent evidence indicates that tissue-resident memory T (TRM) cells play an important role in local murine intrapulmonary immunity. Rhesus monkeys were pulmonary exposed to 2009 pandemic H1N1 virus at days 0 and 28 and immune responses in different tissue compartments were measured. All animals were asymptomatic postinfection. Although only minimal memory immune responses were detected in peripheral blood, a high frequency of influenza nucleoprotein-specific memory T cells was detected in the lung at the "contraction phase," 49-58 d after second virus inoculation. A substantial proportion of lung nucleoprotein-specific memory CD8(+) T cells expressed CD103 and CD69, phenotypic markers of TRM cells. Lung CD103(+) and CD103(-) memory CD8(+) T cells expressed similar levels of IFN-γ and IL-2. Unlike memory T cells, spontaneous Ab secreting cells and memory B cells specific to influenza hemagglutinin were primarily observed in the mediastinal lymph nodes. Little difference in systemic and local immune responses against influenza was observed between young adult (6-8 y) and old animals (18-28 y). Using a nonhuman primate model, we revealed substantial induction of local T and B cell responses following 2009 pandemic H1N1 infection. Our study identified a subset of influenza-specific lung memory T cells characterized as TRM cells in rhesus monkeys. The rhesus monkey model may be useful to explore the role of TRM cells in local tissue protective immunity after rechallenge and vaccination.


Assuntos
Linfócitos B/imunologia , Memória Imunológica/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Macaca mulatta/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T/imunologia , Fatores Etários , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos B/metabolismo , Linfócitos B/virologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Cadeias alfa de Integrinas/imunologia , Cadeias alfa de Integrinas/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/imunologia , Interleucina-2/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/virologia , Macaca mulatta/metabolismo , Macaca mulatta/virologia , Mediastino/virologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Baço/imunologia , Baço/metabolismo , Baço/virologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA