Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biotechnol Bioeng ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39176568

RESUMO

Recombinant adeno-associated virus (rAAV) is a commonly used in vivo gene therapy vector because of its nonpathogenicity, long-term transgene expression, broad tropism, and ability to transduce both dividing and nondividing cells. However, rAAV vector production via transient transfection of mammalian cells typically yields a low fraction of filled-to-total capsids (~1%-30% of total capsids produced). Analysis of our previously developed mechanistic model for rAAV2/5 production attributed these low fill fractions to a poorly coordinated timeline between capsid synthesis and viral DNA replication and the repression of later phase capsid formation by Rep proteins. Here, we extend the model by quantifying the expression dynamics of total Rep proteins and their influence on the key steps of rAAV2/5 production using a multiple dosing transfection of human embryonic kidney 293 (HEK293) cells. We report that the availability of preformed empty capsids and viral DNA copies per cell are not limiting to the capsid-filling reaction. However, optimal expression of Rep proteins (<240 ± 13 ag per cell) enables enrichment of the filled capsid population (>12% of total capsids/cell) upstream. Our analysis suggests increased enrichment of filled capsids via regulating the expression of Rep proteins is possible but at the expense of per cell capsid titer in a triple plasmid transfection. Our study reveals an intrinsic limitation of scaling rAAV2/5 vector genome (vg) production and underscores the need for approaches that allow for regulating the expression of Rep proteins to maximize vg titer per cell upstream.

2.
Adv Physiol Educ ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813607

RESUMO

Cell therapies have gained prominence as a promising therapeutic modality for treating a range of diseases. Despite the recent clinical successes of cell therapy products, very few formal training programs exist for cell therapy manufacturing. To meet the demand for a well-trained workforce, we assembled a team of university researchers and industry professionals to develop an online course on the principles and practice of cell therapy manufacturing. The course covers the basic cell and systems physiology underlying cell therapy products, in addition to explaining end-to-end manufacturing from cell acquisition through to patient treatment, industrialization, and regulatory processes. So far, over 10,000 learners have enrolled in the course, and over 90% of respondents to the course exit survey indicated that they were 'very likely' or 'likely' to recommend the course to a peer. In this paper, we discuss our experience in the collaborative design and implementation of the online course, as well as lessons learned from quantitative and qualitative student feedback. We believe that this course can serve as a model for how academia and industry can collaborate to create innovative, scalable training programs to meet the demands of the modern biotechnology workforce.

3.
Anal Chem ; 95(39): 14608-14615, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37733929

RESUMO

Online monitoring of monoclonal antibody product titers throughout biologics process development and production enables rapid bioprocess decision-making and process optimization. Conventional analytical methods, including high-performance liquid chromatography and turbidimetry, typically require interfacing with an automated sampling system capable of online sampling and fractionation, which suffers from increased cost, a higher risk of failure, and a higher mechanical complexity of the system. In this study, a novel nanofluidic system for continuous direct (no sample preparation) IgG titer measurements was investigated. Tumor necrosis factor α (TNF-α), conjugated with fluorophores, was utilized as a selective binder for adalimumab in the unprocessed cell culture supernatant. The nanofluidic device can separate the bound complex from unbound TNF-α and selectively concentrate the bound complex for high-sensitivity detection. Based on the fluorescence intensity from the concentrated bound complex, a fluorescence intensity versus titer curve can be generated, which was used to determine the titer of samples from filtered, unpurified Chinese hamster ovary cell cultures continuously. The system performed direct monitoring of IgG titers with nanomolar resolution and showed a good correlation with the biolayer interferometry assays. Furthermore, by variation of the concentration of the indicator (TNF-α), the dynamic range of the system can be tuned and further expanded.

4.
Biologicals ; 81: 101661, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621353

RESUMO

The Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) collected historical data from 20 biopharmaceutical industry members on their experience with the in vivo adventitious virus test, the in vitro virus test, and the use of next generation sequencing (NGS) for viral safety. Over the past 20 years, only three positive in vivo adventitious virus test results were reported, and all were also detected in another concurrent assay. In more than three cases, data collected as a part of this study also found that the in vivo adventitious virus test had given a negative result for a sample that was later found to contain virus. Additionally, the in vivo adventitious virus test had experienced at least 21 false positives and had to be repeated an additional 21 times all while using more than 84,000 animals. These data support the consideration and need for alternative broad spectrum viral detection tests that are faster, more sensitive, more accurate, more specific, and more humane. NGS is one technology that may meet this need. Eighty one percent of survey respondents are either already actively using or exploring the use of NGS for viral safety. The risks and challenges of replacing in vivo adventitious virus testing with NGS are discussed. It is proposed to update the overall virus safety program for new biopharmaceutical products by replacing in vivo adventitious virus testing approaches with modern methodologies, such as NGS, that maintain or even improve the final safety of the product.


Assuntos
Produtos Biológicos , Vírus , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Vírus/genética , Contaminação de Medicamentos/prevenção & controle
5.
Nano Lett ; 22(4): 1511-1517, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35148107

RESUMO

Quantifying the composition of viral vectors used in vaccine development and gene therapy is critical for assessing their functionality. Adeno-associated virus (AAV) vectors, which are the most widely used viral vectors for in vivo gene therapy, are typically characterized using PCR, ELISA, and analytical ultracentrifugation which require laborious protocols or hours of turnaround time. Emerging methods such as charge-detection mass spectroscopy, static light scattering, and mass photometry offer turnaround times of minutes for measuring AAV mass using optical or charge properties of AAV. Here, we demonstrate an orthogonal method where suspended nanomechanical resonators (SNR) are used to directly measure both AAV mass and aggregation from a few microliters of sample within minutes. We achieve a precision near 10 zeptograms which corresponds to 1% of the genome holding capacity of the AAV capsid. Our results show the potential of our method for providing real-time quality control of viral vectors during biomanufacturing.


Assuntos
Dependovirus , Vetores Genéticos , Capsídeo , DNA , Dependovirus/genética , Vetores Genéticos/genética
6.
Biotechnol Bioeng ; 118(8): 3215-3224, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101159

RESUMO

Batch low-pH hold is a common processing step to inactivate enveloped viruses for biologics derived from mammalian sources. Increased interest in the transition of biopharmaceutical manufacturing from batch to continuous operation resulted in numerous attempts to adapt batch low-pH hold to continuous processing. However, control challenges with operating this system have not been directly addressed. This article describes a low-cost, column-based continuous viral inactivation system constructed with off-the-shelf components. Model-based, reaction-invariant pH controller is implemented to account for the nonlinearities with Bayesian estimation addressing variations in the operation. The residence time distribution is modeled as a plug flow reactor with axial dispersion in series with a continuously stirred tank reactor, and is periodically estimated during operation through inverse tracer experiments. The estimated residence time distribution quantifies the minimum residence time, which is used to adjust feed flow rates. Controller validation experiments demonstrate that pH and minimum residence time setpoint tracking and disturbance rejection are achieved with fast and accurate response and no instability. Viral inactivation testing demonstrates tight control of logarithmic reduction values over extended operation. This study provides tools for the design and operation of continuous viral inactivation systems in service of increasing productivity, improving product quality, and enhancing patient safety.


Assuntos
Produtos Biológicos , Modelos Químicos , Inativação de Vírus , Humanos , Concentração de Íons de Hidrogênio
7.
Biotechnol Bioeng ; 118(8): 2967-2976, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913515

RESUMO

In recent years, high temperature short time (HTST) treatment technology has been increasingly adopted for medium treatment to mitigate the potential risk of viral contamination in mammalian cell culture GMP manufacturing facilities. Mouse minute virus (MMV), also called minute virus of mice (MVM), implicated in multiple viral contamination events is commonly used as a relevant model virus to assess the effectiveness of HTST treatment of cell culture media. However, results from different studies vary broadly in inactivation kinetics as well as log reduction factors (LRFs) achieved under given treatment conditions. To determine whether the reported discrepancies stemmed from differences in MMV strains, laboratory-scale HTST devices, medium matrices, and/or experimental designs, we have taken a collaborative approach to systematically assess the effectiveness of HTST treatment for MMV inactivation. This effort was conceptualized based on a media treatment gap analysis conducted by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) under the MIT Center for Biomedical Innovation (CBI). Specifically, two different MMV strains were used to evaluate the effectiveness of HTST at various treatment conditions with regard to exposure temperature and hold time duration by two independent laboratories within two different companies. To minimize experimental variations, the two sites used the same batches of MMV stocks, the same commercially purchased medium, and the same model of thermocyclers as the laboratory-scale HTST device. The two independent laboratories yielded similar MMV inactivation kinetics and comparable LRF. No significant differences were observed between the two MMV strains evaluated, suggesting that the variations from prior studies were likely due to differences in equipment, medium matrices, or other factors. The data presented here indicate that MMV inactivation by HTST treatment obeys first-order kinetics and can be mathematically modeled using an Arrhenius equation. The model-based extrapolation provides a quantitative estimate of MMV inactivation by the current industry standard HTST condition (102°C for a hold time of 10 s) used for medium treatment. Finally, based on the data from the current study and the industry experience, it is recommended that any alternative virus barrier technologies adopted for medium treatment should provide a clearance of at least 3.0 LRF based on a worst-case model virus to effectively mitigate potential risks of viral contamination.


Assuntos
Temperatura Alta , Vírus Miúdo do Camundongo/química , Inativação de Vírus , Animais , Linhagem Celular Transformada , Humanos , Camundongos , Fatores de Tempo
8.
Biotechnol Adv ; : 108433, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168354

RESUMO

Current processes for the production of recombinant adeno-associated virus (rAAV) are inadequate to meet the surging demand for rAAV-based gene therapies. This article reviews recent advances that hold the potential to address current limitations in rAAV manufacturing. A multidisciplinary perspective on technological progress in rAAV production is presented, underscoring the necessity to move beyond incremental refinements and adopt a holistic strategy to address existing challenges. Since several recent reviews have thoroughly covered advancements in upstream technology, this article provides only a concise overview of these developments before moving to pivotal areas of rAAV manufacturing not well covered in other reviews, including analytical technologies for rapid and high-throughput measurement of rAAV quality attributes, mathematical modeling for platform and process optimization, and downstream approaches to maximize efficiency and rAAV yield. Novel technologies that have the potential to address the current gaps in rAAV manufacturing are highlighted. Implementation challenges and future research directions are critically discussed.

9.
Lab Chip ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189168

RESUMO

Rapid and sensitive detection of pathogens in various samples is crucial for disease diagnosis, environmental surveillance, as well as food and water safety monitoring. However, the low abundance of pathogens (<10 CFU) in large volume (1 mL-1 L) samples containing vast backgrounds critically limits the sensitivity of even the most advanced techniques, such as digital PCR. Therefore, there is a critical need for sample preparation that can enrich low-abundance pathogens from complex and large-volume samples. This study develops an efficient electrostatic microfiltration (EM)-based sample preparation technique capable of processing ultra-large-volume (≥500 mL) samples at high throughput (≥10 mL min-1). This approach achieves a significant enrichment (>8000×) of extremely-low-abundance pathogens (down to level of 0.02 CFU mL-1, i.e., 10 CFU in 500 mL). Furthermore, EM-enabled sample preparation facilitates digital amplification techniques sensitively detecting broad pathogens, including bacteria, fungi, and viruses from various samples, in a rapid (≤3 h) sample-to-result workflow. Notably, the operational ease, portability, and compatibility/integrability with various downstream detection platforms highlight its great potential for widespread applications across diverse settings.

10.
Mol Ther Methods Clin Dev ; 30: 122-146, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746245

RESUMO

Current manufacturing processes for recombinant adeno-associated viruses (rAAVs) have less-than-desired yields and produce significant amounts of empty capsids. The increasing demand and the high cost of goods for rAAV-based gene therapies motivate development of more efficient manufacturing processes. Recently, the US Food and Drug Administration (FDA) approved the first rAAV-based gene therapy product manufactured in the baculovirus expression vector system (BEVS), a technology that demonstrated production of high titers of full capsids. This work presents a first mechanistic model describing the key extracellular and intracellular phenomena occurring during baculovirus infection and rAAV maturation in the BEVS. The model predictions are successfully validated for in-house and literature experimental measurements of the vector genome and of structural and non-structural proteins collected during rAAV manufacturing in the BEVS with the TwoBac and ThreeBac constructs. A model-based analysis of the process is carried out to identify the bottlenecks that limit full capsid formation. Vector genome amplification is found to be the limiting step for rAAV production in Sf9 cells using either the TwoBac or ThreeBac system. In turn, vector genome amplification is hindered by limiting Rep78 levels. Transgene and non-essential baculovirus protein expression in the insect cell during rAAV manufacturing also negatively influences the rAAV production yields.

11.
Microbiol Spectr ; : e0135023, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646508

RESUMO

Assuring that cell therapy products are safe before releasing them for use in patients is critical. Currently, compendial sterility testing for bacteria and fungi can take 7-14 days. The goal of this work was to develop a rapid untargeted approach for the sensitive detection of microbial contaminants at low abundance from low volume samples during the manufacturing process of cell therapies. We developed a long-read sequencing methodology using Oxford Nanopore Technologies MinION platform with 16S and 18S amplicon sequencing to detect USP <71> organisms and other microbial species. Reads are classified metagenomically to predict the microbial species. We used an extreme gradient boosting machine learning algorithm (XGBoost) to first assess if a sample is contaminated, and second, determine whether the predicted contaminant is correctly classified or misclassified. The model was used to make a final decision on the sterility status of the input sample. An optimized experimental and bioinformatics pipeline starting from spiked species through to sequenced reads allowed for the detection of microbial samples at 10 colony-forming units (CFU)/mL using metagenomic classification. Machine learning can be coupled with long-read sequencing to detect and identify sample sterility status and microbial species present in T-cell cultures, including the USP <71> organisms to 10 CFU/mL. IMPORTANCE This research presents a novel method for rapidly and accurately detecting microbial contaminants in cell therapy products, which is essential for ensuring patient safety. Traditional testing methods are time-consuming, taking 7-14 days, while our approach can significantly reduce this time. By combining advanced long-read nanopore sequencing techniques and machine learning, we can effectively identify the presence and types of microbial contaminants at low abundance levels. This breakthrough has the potential to improve the safety and efficiency of cell therapy manufacturing, leading to better patient outcomes and a more streamlined production process.

12.
PDA J Pharm Sci Technol ; 77(2): 115-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36241212

RESUMO

Some members of MIT's Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) previously published content on the "Quality Risk Management in the Context of Viral Contamination", which described tools, procedures, and methodologies for assessing and managing the risk of a potential virus contamination in cell culture processes. To address the growing industry interest in moving manufacturing toward open ballrooms with functionally closed systems and to demonstrate how the ideas of risk management can be leveraged to perform a risk assessment, CAACB conducted a case study exercise of these new manufacturing modalities. In the case study exercise, a cross-functional team composed of personnel from many of CAACB's industry membership collaboratively assessed the risks of viral cross-contamination between a human and non-human host cell system in an open manufacturing facility. This open manufacturing facility had no walls to provide architectural separation of two processes occurring simultaneously, specifically a recombinant protein perfusion cell culture process using the human cell line, HEK-293 (Process 1) and a downstream postviral filtration unit operation (Process 2) of a recombinant protein produced in CHO cells. This viral risk assessment focused on cross-contamination of the Process 2 filtration unit operation after the Process 1 perfusion bioreactor was contaminated with a virus that went undetected. The workflow for quality risk management that is recommended by the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) was followed, which included identifying and mapping the manufacturing process, defining the risk question, risk evaluation, and risk control. The case study includes a completed Failure Mode and Effects Analysis (FMEA) to provide descriptions of the specific risks and corresponding recommended risk reduction actions.


Assuntos
Gestão de Riscos , Vírus , Cricetinae , Animais , Humanos , Cricetulus , Células HEK293 , Medição de Risco , Proteínas Recombinantes
13.
Biomaterials ; 280: 121274, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871881

RESUMO

Food systems of the future will need to face an increasingly clear reality - that a protein-rich diet is essential for good health, but traditional meat products will not suffice to ensure safety, sustainability, and equity of food supply chains at a global scale. This paper provides an in-depth analysis of bioprocess technologies needed for cell-based meat production and challenges in reaching commercial scale. Specifically, it reviews state-of-the-art bioprocess technologies, current limitations, and opportunities for research across four domains: cell line development, cell culture media, scaffolding, and bioreactors. This also includes exploring innovations to make cultured meat a viable protein alternative across numerous key performance indicators and for specific applications where traditional livestock is not an option (e.g., local production, space exploration). The paper explores tradeoffs between production scale, product quality, production cost, and footprint over different time horizons. Finally, a discussion explores various factors that may impact the ability to successfully scale and market cultured meat products: social acceptance, environmental tradeoffs, regulatory guidance, and public health benefits. While the exact nature of the transition from traditional livestock to alternative protein products is uncertain, it has already started and will likely continue to build momentum in the next decade.


Assuntos
Abastecimento de Alimentos , Carne , Reatores Biológicos
14.
Anal Chim Acta ; 1196: 339494, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151407

RESUMO

Nucleic acids-based molecular diagnostic tools incorporating the CRISPR/Cas system are being developed as rapid and sensitive methods for pathogen detection. However, most CRISPR/Cas-based diagnostics lack quantitative detection ability. Here, we report Warm-Start RApid DIgital Crispr Approach (WS-RADICA) for the rapid, sensitive, and quantitative detection of nucleic acids. WS-RADICA detected as little as 1 copy/µl SARS-CoV-2 RNA in 40 min (qualitative detection) or 60 min (quantitative detection). WS-RADICA can be easily adapted to various digital devices: two digital chips were evaluated for both DNA and RNA quantification, with linear dynamic ranges of 0.8-12777 copies/µL for DNA and 1.2-18391 copies/µL for RNA (both R2 values > 0.99). Moreover, WS-RADICA had lower detection limit and higher inhibitor tolerance than a bulk RT-LAMP-Cas12b reaction and similar performance to RT-qPCR and RT-dPCR. To prove its performance on nucleic acids derived from live virus, WS-RADICA was also validated to detect and quantify human adenovirus and herpes simplex virus. Given its speed, sensitivity, quantification capability, and inhibitor tolerance, WS-RADICA shows great promise for a variety of applications requiring nucleic acid quantification.


Assuntos
COVID-19 , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
15.
Protein Sci ; 31(11): e4457, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36153664

RESUMO

Antibiotics in aquaculture prevent bacterial infection of fish, but their misuse is a public health risk and contributes to the unintentional creation of multiresistant pathogens. Regulatory agencies cannot do the rigorous, expensive testing required to keep up with the volume of seafood shipments. Current rapid test kits for these drugs enable the increase in testing needed for adequate monitoring of food supply chains, but they lack a high degree of accuracy. To combat this, we set out to discover and engineer single-domain antibodies (VHHs) that bind to small molecule antibiotics, and that can be used in rapid test kits. The small size, solubility, and stability of VHHs are useful properties that can improve the reliability and shelf-life of test kits for these adulterants. Here, we report a novel anti-chloramphenicol VHH (Chl-VHH) with a disassociation constant of 57 nM. This was achieved by immunizing a llama against a chloramphenicol-keyhole limpet hemocyanin (KLH) conjugate and screening for high affinity binders through phage display. The crystal structure of the bound-VHH to chloramphenicol was key to identifying a mutation in the binding pocket that resulted in a 16-fold improvement in binding affinity. In addition, the structure provides new insights into VHH-hapten interactions that can guide future engineering of VHHs against additional targets.


Assuntos
Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Cloranfenicol , Reprodutibilidade dos Testes , Antibacterianos , Especificidade de Anticorpos
16.
Mol Ther Methods Clin Dev ; 25: 410-424, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35573051

RESUMO

Controlling microbial risks in cell therapy products (CTPs) is important for product safety. Here, we identified the nicotinic acid (NA) to nicotinamide (NAM) ratio as a biomarker that detects a broad spectrum of microbial contaminants in cell cultures. We separately added six different bacterial species into mesenchymal stromal cell and T cell culture and found that NA was uniquely present in these bacteria-contaminated CTPs due to the conversion from NAM by microbial nicotinamidases, which mammals lack. In cells inoculated with 1 × 104 CFUs/mL of different microorganisms, including USP <71> defined organisms, the increase in NA to NAM ratio ranged from 72 to 15,000 times higher than the uncontaminated controls after 24 h. Importantly, only live microorganisms caused increases in this ratio. In cells inoculated with 18 CFUs/mL of Escherichia coli, 20 CFUs/mL of Bacillus subtilis, and 10 CFUs/mL of Candida albicans, significant increase of NA to NAM ratio was detected using LC-MS after 18.5, 12.5, and 24.5 h, respectively. In contrast, compendial sterility test required >24 h to detect the same amount of these three organisms. In conclusion, the NA to NAM ratio is a useful biomarker for detection of early-stage microbial contaminations in CTPs.

17.
Antib Ther ; 4(1): 60-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33928236

RESUMO

BACKGROUND: Neutralizing antibodies (nAbs) against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can play an important role in reducing impacts of the COVID-19 pandemic, complementing ongoing public health efforts such as diagnostics and vaccination. Rapidly designing, manufacturing and distributing nAbs requires significant planning across the product value chain and an understanding of the opportunities, challenges and risks throughout. METHODS: A systems framework comprised of four critical components is presented to aid in developing effective end-to-end nAbs strategies in the context of a pandemic: (1) product design and optimization, (2) epidemiology, (3) demand and (4) supply. Quantitative models are used to estimate product demand using available epidemiological data, simulate biomanufacturing operations from typical bioprocess parameters and calculate antibody production costs to meet clinical needs under various realistic scenarios. RESULTS: In a US-based case study during the 9-month period from March 15 to December 15, 2020, the projected number of SARS-CoV-2 infections was 15.73 million. The estimated product volume needed to meet therapeutic demand for the maximum number of clinically eligible patients ranged between 6.3 and 31.5 tons for 0.5 and 2.5 g dose sizes, respectively. The relative production scale and cost needed to meet demand are calculated for different centralized and distributed manufacturing scenarios. CONCLUSIONS: Meeting demand for anti-SARS-CoV-2 nAbs requires significant manufacturing capacity and planning for appropriate administration in clinical settings. MIT Center for Biomedical Innovation's data-driven tools presented can help inform time-critical decisions by providing insight into important operational and policy considerations for making nAbs broadly accessible, while considering time and resource constraints.

18.
Biomaterials ; 274: 120876, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34034027

RESUMO

Rapid diagnostics of adventitious agents in biopharmaceutical/cell manufacturing release testing and the fight against viral infection have become critical. Quantitative real-time PCR and CRISPR-based methods rapidly detect DNA/RNA in 1 h but suffer from inter-site variability. Absolute quantification of DNA/RNA by methods such as digital PCR reduce this variability but are currently too slow for wider application. Here, we report a RApid DIgital Crispr Approach (RADICA) for absolute quantification of nucleic acids in 40-60 min. Using SARS-CoV-2 as a proof-of-concept target, RADICA allows for absolute quantification with a linear dynamic range of 0.6-2027 copies/µL (R2 value > 0.99), high accuracy and low variability, no cross-reactivity to similar targets, and high tolerance to human background DNA. RADICA's versatility is validated against other targets such as Epstein-Barr virus (EBV) from human B cells and patients' serum. RADICA can accurately detect and absolutely quantify EBV DNA with similar dynamic range of 0.5-2100 copies/µL (R2 value > 0.98) in 1 h without thermal cycling, providing a 4-fold faster alternative to digital PCR-based detection. RADICA therefore enables rapid and sensitive absolute quantification of nucleic acids which can be widely applied across clinical, research, and biomanufacturing areas.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Ácidos Nucleicos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Herpesvirus Humano 4/genética , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade
19.
Mol Ther Methods Clin Dev ; 21: 642-655, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34095346

RESUMO

Manufacturing of recombinant adeno-associated virus (rAAV) viral vectors remains challenging, with low yields and low full:empty capsid ratios in the harvest. To elucidate the dynamics of recombinant viral production, we develop a mechanistic model for the synthesis of rAAV viral vectors by triple plasmid transfection based on the underlying biological processes derived from wild-type AAV. The model covers major steps starting from exogenous DNA delivery to the reaction cascade that forms viral proteins and DNA, which subsequently result in filled capsids, and the complex functions of the Rep protein as a regulator of the packaging plasmid gene expression and a catalyst for viral DNA packaging. We estimate kinetic parameters using dynamic data from literature and in-house triple transient transfection experiments. Model predictions of productivity changes as a result of the varied input plasmid ratio are benchmarked against transfection data from the literature. Sensitivity analysis suggests that (1) the poorly coordinated timeline of capsid synthesis and viral DNA replication results in a low ratio of full virions in harvest, and (2) repressive function of the Rep protein could be impeding capsid production at a later phase. The analyses from the mathematical model provide testable hypotheses for evaluation and reveal potential process bottlenecks that can be investigated.

20.
Biotechnol Adv ; 49: 107764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957276

RESUMO

Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA