Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Chem Rev ; 124(6): 3186-3219, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38466779

RESUMO

It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.

2.
Acc Chem Res ; 57(14): 1885-1895, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968602

RESUMO

ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis.In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome.These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.


Assuntos
Células Artificiais , Catálise , Células Artificiais/química , Células Artificiais/metabolismo , Origem da Vida
3.
Biophys J ; 122(2): 397-407, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36463407

RESUMO

The crowdedness of the cell calls for adequate intracellular organization. Biomolecular condensates, formed by liquid-liquid phase separation of intrinsically disordered proteins and nucleic acids, are important organizers of cellular fluids. To underpin the molecular mechanisms of protein condensation, cell-free studies are often used where the role of crowding is not investigated in detail. Here, we investigate the effects of macromolecular crowding on the formation and material properties of a model heterotypic biomolecular condensate, consisting of nucleophosmin (NPM1) and ribosomal RNA (rRNA). We studied the effect of the macromolecular crowding agent poly(ethylene glycol) (PEG), which is often considered an inert crowding agent. We observed that PEG could induce both homotypic and heterotypic phase separation of NPM1 and NPM1-rRNA, respectively. Crowding increases the condensed concentration of NPM1 and decreases its equilibrium dilute phase concentration, although no significant change in the concentration of rRNA in the dilute phase was observed. Interestingly, the crowder itself is concentrated in the condensates, suggesting that co-condensation rather than excluded volume interactions underlie the enhanced phase separation by PEG. Fluorescence recovery after photobleaching measurements indicated that both NPM1 and rRNA become immobile at high PEG concentrations, indicative of a liquid-to-gel transition. Together, these results provide more insight into the role of synthetic crowding agents in phase separation and demonstrate that condensate properties determined in vitro depend strongly on the addition of crowding agents.


Assuntos
Fenômenos Bioquímicos , Ácidos Nucleicos , Nucleofosmina , RNA Ribossômico , Polietilenoglicóis/química
4.
Small ; 19(38): e2303138, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218010

RESUMO

Complex coacervates are phase-separated liquid droplets composed of oppositely charged multivalent molecules. The unique material properties of the complex coacervate interior favours the sequestration of biomolecules and facilitates reactions. Recently, it is shown that coacervates can be used for direct cytosolic delivery of sequestered biomolecules in living cells. Here, it is studied that the physical properties required for complex coacervates composed of oligo-arginine and RNA to cross phospholipid bilayers and enter liposomes penetration depends on two main parameters: the difference in ζ-potential between the complex coacervates and the liposomes, and the partitioning coefficient (Kp ) of lipids into the complex coacervates. Following these guidelines, a range of complex coacervates is found that is able to penetrate the membrane of living cells, thus paving the way for further development of coacervates as delivery vehicles of therapeutic agents.


Assuntos
Lipossomos , RNA
5.
Chemistry ; 29(50): e202301159, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310801

RESUMO

Biochemical reactions occurring in highly crowded cellular environments require different means of control to ensure productivity and specificity. Compartmentalization of reagents by liquid-liquid phase separation is one of these means. However, extremely high local protein concentrations of up to 400 mg/ml can result in pathological aggregation into fibrillar amyloid structures, a phenomenon that has been linked to various neurodegenerative diseases. Despite its relevance, the process of liquid-to-solid transition inside condensates is still not well understood at the molecular level. We thus herein use small peptide derivatives that can undergo both liquid-liquid and subsequent liquid-to-solid phase transition as model systems to study both processes. Using solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM), we compare the structure of condensed states of leucine, tryptophan and phenylalanine containing derivatives, distinguishing between liquid-like condensates, amorphous aggregates and fibrils, respectively. A structural model for the fibrils formed by the phenylalanine derivative was obtained by an NMR-based structure calculation. The fibrils are stabilised by hydrogen bonds and side-chain π-π interactions, which are likely much less pronounced or absent in the liquid and amorphous state. Such noncovalent interactions are equally important for the liquid-to-solid transition of proteins, particularly those related to neurodegenerative diseases.


Assuntos
Amiloide , Peptídeos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Modelos Moleculares , Espectroscopia de Ressonância Magnética , Amiloide/química , Fenilalanina
6.
Biophys J ; 121(20): 3962-3974, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36004782

RESUMO

Many cellular condensates are heterotypic mixtures of proteins and RNA formed in complex environments. Magnesium ions (Mg2+) and ATP can impact RNA folding, and local intracellular levels of these factors can vary significantly. However, the effect of ATP:Mg2+ on the material properties of protein-RNA condensates is largely unknown. Here, we use an in vitro condensate model of nucleoli, made from nucleophosmin 1 (NPM1) proteins and ribosomal RNA (rRNA), to study the effect of ATP:Mg2+. While NPM1 dynamics remain unchanged at increasing Mg2+ concentrations, the internal RNA dynamics dramatically slowed until a critical point, where gel-like states appeared, suggesting the RNA component alone forms a viscoelastic network that undergoes maturation driven by weak multivalent interactions. ATP reverses this arrest and liquefies the gel-like structures. ATP:Mg2+ also influenced the NPM1-rRNA composition of condensates and enhanced the partitioning of two clients: an arginine-rich peptide and a small nuclear RNA. By contrast, larger ribosome partitioning shows dependence on ATP:Mg2+ and can become reversibly trapped around NPM1-rRNA condensates. Lastly, we show that dissipative enzymatic reactions that deplete ATP can be used to control the shape, composition, and function of condensates. Our results illustrate how intracellular environments may regulate the state and client partitioning of RNA-containing condensates.


Assuntos
Proteínas Nucleares , RNA , Humanos , Proteínas Nucleares/metabolismo , Magnésio/farmacologia , Nucleofosmina , RNA Ribossômico/genética , Peptídeos , Arginina , Íons , RNA Nuclear Pequeno , Trifosfato de Adenosina
7.
J Am Chem Soc ; 144(30): 13451-13455, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35878395

RESUMO

Recent studies have shown that the interactions between condensates and biological membranes are of functional importance. Here, we study how the interaction between complex coacervates and liposomes as model systems can lead to wetting, membrane deformation, and endocytosis. Depending on the interaction strength between coacervates and liposomes, the wetting behavior ranged from nonwetting to engulfment (endocytosis) and complete wetting. Endocytosis of coacervates was found to be a general phenomenon: coacervates made from a wide range of components could be taken up by liposomes. A simple theory taking into account surface energies and coacervate sizes can explain the observed morphologies. Our findings can help to better understand condensate-membrane interactions in cellular systems and provide new avenues for intracellular delivery using coacervates.


Assuntos
Endocitose , Lipossomos , Membrana Celular , Molhabilidade
8.
Chem Soc Rev ; 50(6): 3690-3705, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33616129

RESUMO

Coacervates are condensed liquid-like droplets formed by liquid-liquid phase separation of molecules through multiple weak associative interactions. In recent years it has emerged that not only long polymers, but also short peptides are capable of forming simple and complex coacervates. The coacervate droplets they form act as compartments that sequester and concentrate a wide range of solutes, and their spontaneous formation make coacervates attractive protocell models. The main advantage of peptides as building blocks lies in the functional diversity of the amino acid residues, which allows for tailoring of the peptide's phase separation propensity, their selectivity in guest molecule uptake and the physicochemical and catalytic properties of the compartments. The aim of this tutorial review is to illustrate the recent developments in the field of peptide-based coacervates in a systematic way and to deduce the basic requirements for both simple and complex coacervation of peptides. We review a selection of peptide coacervates that illustrates the essentials of phase separation, the limitations, and the properties that make peptide coacervates biomimetic protocells. Finally, we provide some perspectives of this novel research field in the direction of active droplets, moving away from thermodynamic equilibrium.


Assuntos
Células Artificiais/química , Biomimética , Peptídeos/química , Catálise , Nucleotídeos/química , Polietilenoglicóis/química
9.
J Am Chem Soc ; 142(6): 2905-2914, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31958956

RESUMO

Liquid-liquid phase separation plays an important role in cellular organization. Many subcellular condensed bodies are hierarchically organized into multiple coexisting domains or layers. However, our molecular understanding of the assembly and internal organization of these multicomponent droplets is still incomplete, and rules for the coexistence of condensed phases are lacking. Here, we show that the formation of hierarchically organized multiphase droplets with up to three coexisting layers is a generic phenomenon in mixtures of complex coacervates, which serve as models of charge-driven liquid-liquid phase separated systems. We present simple theoretical guidelines to explain both the hierarchical arrangement and the demixing transition in multiphase droplets using the interfacial tensions and critical salt concentration as inputs. Multiple coacervates can coexist if they differ sufficiently in macromolecular density, and we show that the associated differences in critical salt concentration can be used to predict multiphase droplet formation. We also show that the coexisting coacervates present distinct chemical environments that can concentrate guest molecules to different extents. Our findings suggest that condensate immiscibility may be a very general feature in biological systems, which could be exploited to design self-organized synthetic compartments to control biomolecular processes.


Assuntos
Substâncias Macromoleculares/química , Transição de Fase , Microscopia Confocal , Sais/química , Solubilidade
10.
Soft Matter ; 16(20): 4718-4722, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400820

RESUMO

Bidisperse mixtures of charged nanoparticles form separate layers upon centrifugation as a result of minimization of the system's free energy in sedimentation-diffusion equilibrium. Different factors were investigated experimentally for their effects on the layering, and are supported by theoretical calculations of the full sedimentation profiles. Surprisingly, lighter/smaller nanoparticles can even sink below heavier/larger ones when the particle surface charge is carefully tuned. This study provides deeper insights into the control of layering in polydisperse particle mixtures during sedimentation.

11.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824618

RESUMO

Biomolecular condensates play a key role in organizing cellular fluids such as the cytoplasm and nucleoplasm. Most of these non-membranous organelles show liquid-like properties both in cells and when studied in vitro through liquid-liquid phase separation (LLPS) of purified proteins. In general, LLPS of proteins is known to be sensitive to variations in pH, temperature and ionic strength, but the role of crowding remains underappreciated. Several decades of research have shown that macromolecular crowding can have profound effects on protein interactions, folding and aggregation, and it must, by extension, also impact LLPS. However, the precise role of crowding in LLPS is far from trivial, as most condensate components have a disordered nature and exhibit multiple weak attractive interactions. Here, we discuss which factors determine the scope of LLPS in crowded environments, and we review the evidence for the impact of macromolecular crowding on phase boundaries, partitioning behavior and condensate properties. Based on a comparison of both in vivo and in vitro LLPS studies, we propose that phase separation in cells does not solely rely on attractive interactions, but shows important similarities to segregative phase separation.


Assuntos
Fracionamento Celular/métodos , Citosol/química , Proteínas Intrinsicamente Desordenadas/química , Animais , Cromatografia Líquida/métodos , Grânulos Citoplasmáticos/química , Humanos
12.
Langmuir ; 34(50): 15174-15180, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30427683

RESUMO

We present a novel theory to predict the contact angle of water on amphoteric surfaces, as a function of pH and ionic strength. To validate our theory, experiments were performed on two commonly used amphoteric materials, alumina (Al2O3) and titania (TiO2). We find good agreement at all pH values, and at different salt concentrations. With increasing salt concentration, the theory predicts the contact angle-pH curve to get steeper, while keeping the same contact angle at pH = PZC (point of zero charge), in agreement with data. Our model is based on the amphoteric 1-p K model and includes the electrostatic free energy of an aqueous system as well as the surface energy of a droplet in contact with the surface. In addition, we show how our theory suggests the possibility of a novel responsive membrane design, based on amphoteric groups. At pH ∼ PZC, this membrane resists flow of water but at slightly more acidic or basic conditions the wettability of the membrane pores may change sufficiently to allow passage of water and solutes. Moreover, these membranes could act as active sensors that only allow solutions of high ionic strength to flow through in wastewater treatment.

13.
Soft Matter ; 14(3): 361-367, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29199758

RESUMO

Cells can control the assembly and disassembly of membraneless organelles by enzymatic processes, but similar control has not been achieved in vitro yet. Here we develop ATP-based coacervate droplets as artificial membraneless organelles that can be fully controlled by two cooperating enzymes. Droplets can be generated within a minute following the addition of phosphoenolpyruvate as a substrate, and they can be dissolved within tens of seconds by adding glucose as the second substrate. We show how the rates of droplet generation and dissolution can be tuned by varying the enzyme and substrate concentrations, and we support our findings with a kinetic model of the underlying enzymatic reaction network. As all steps of the coacervate droplet life cycle, including nucleation, coarsening, and dissolution, occur under the same reaction conditions, the cycle can be repeated multiple times. In addition, by carefully balancing the rates of both enzymatic reactions, our system can be programmed to either form or dissolve droplets at specified times, acting as a chemical timer.


Assuntos
Enzimas/metabolismo , Hidrodinâmica , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Organelas/metabolismo , Eletricidade Estática
14.
Proc Natl Acad Sci U S A ; 110(29): 11692-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818642

RESUMO

Liquid-liquid phase transitions in complex mixtures of proteins and other molecules produce crowded compartments supporting in vitro transcription and translation. We developed a method based on picoliter water-in-oil droplets to induce coacervation in Escherichia coli cell lysate and follow gene expression under crowded and noncrowded conditions. Coacervation creates an artificial cell-like environment in which the rate of mRNA production is increased significantly. Fits to the measured transcription rates show a two orders of magnitude larger binding constant between DNA and T7 RNA polymerase, and five to six times larger rate constant for transcription in crowded environments, strikingly similar to in vivo rates. The effect of crowding on interactions and kinetics of the fundamental machinery of gene expression has a direct impact on our understanding of biochemical networks in vivo. Moreover, our results show the intrinsic potential of cellular components to facilitate macromolecular organization into membrane-free compartments by phase separation.


Assuntos
Células Artificiais , Substâncias Macromoleculares/química , Transcrição Gênica/fisiologia , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , Modelos Biológicos , Transição de Fase
15.
Nat Rev Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134696

RESUMO

There is an increasing amount of evidence that biomolecular condensates are linked to neurodegenerative diseases associated with protein aggregation, such as Alzheimer's disease and amyotrophic lateral sclerosis, although the mechanisms underlying this link remain elusive. In this Review, we summarize the possible connections between condensates and protein aggregation. We consider both liquid-to-solid transitions of phase-separated proteins and the partitioning of proteins into host condensates. We distinguish five key factors by which the physical and chemical environment of a condensate can influence protein aggregation, and we discuss their relevance in studies of protein aggregation in the presence of biomolecular condensates: increasing the local concentration of proteins, providing a distinct chemical microenvironment, introducing an interface wherein proteins can localize, changing the energy landscape of aggregation pathways, and the presence of chaperones in condensates. Analysing the role of biomolecular condensates in protein aggregation may be essential for a full understanding of amyloid formation and offers a new perspective that can help in developing new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.

16.
Nat Commun ; 15(1): 3564, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670952

RESUMO

Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.


Assuntos
Eletroforese , Propriedades de Superfície , Eletroforese/métodos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Polilisina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos , Eletricidade Estática
18.
Small Methods ; 7(12): e2300294, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37354057

RESUMO

Compartmentalization is crucial for the functioning of cells. Membranes enclose and protect the cell, regulate the transport of molecules entering and exiting the cell, and organize cellular machinery in subcompartments. In addition, membraneless condensates, or coacervates, offer dynamic compartments that act as biomolecular storage centers, organizational hubs, or reaction crucibles. Emerging evidence shows that phase-separated membraneless bodies in the cell are involved in a wide range of functional interactions with cellular membranes, leading to transmembrane signaling, membrane remodeling, intracellular transport, and vesicle formation. Such functional and dynamic interplay between phase-separated droplets and membranes also offers many potential benefits to artificial cells, as shown by recent studies involving coacervates and liposomes. Depending on the relative sizes and interaction strength between coacervates and membranes, coacervates can serve as artificial membraneless organelles inside liposomes, as templates for membrane assembly and hybrid artificial cell formation, as membrane remodelers for tubulation and possibly division, and finally, as cargo containers for transport and delivery of biomolecules across membranes by endocytosis or direct membrane crossing. Here, recent experimental examples of each of these functions are reviewed and the underlying physicochemical principles and possible future applications are discussed.


Assuntos
Células Artificiais , Células Artificiais/química , Células Artificiais/metabolismo , Lipossomos , Membrana Celular , Membranas
19.
Nat Commun ; 14(1): 8492, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129391

RESUMO

Coacervate droplets are promising protocell models because they sequester a wide range of guest molecules and may catalyze their conversion. However, it remains unclear how life's building blocks, including peptides, could be synthesized from primitive precursor molecules inside such protocells. Here, we develop a redox-active protocell model formed by phase separation of prebiotically relevant ferricyanide (Fe(CN)63-) molecules and cationic peptides. Their assembly into coacervates can be regulated by redox chemistry and the coacervates act as oxidizing hubs for sequestered metabolites, like NAD(P)H and gluthathione. Interestingly, the oxidizing potential of Fe(CN)63- inside coacervates can be harnessed to drive the formation of new amide bonds between prebiotically relevant amino acids and α-amidothioacids. Aminoacylation is enhanced in Fe(CN)63-/peptide coacervates and selective for amino acids that interact less strongly with the coacervates. We finally use Fe(CN)63--containing coacervates to spatially control assembly of fibrous networks inside and at the surface of coacervate protocells. These results provide an important step towards the prebiotically relevant integration of redox chemistry in primitive cell-like compartments.


Assuntos
Células Artificiais , Células Artificiais/química , Peptídeos , Oxirredução , Aminoácidos , Amidas
20.
Adv Colloid Interface Sci ; 318: 102964, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515864

RESUMO

1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA