Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Dairy Sci ; 101(4): 3140-3154, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29395135

RESUMO

Genome-wide association (GWA) of feed efficiency (FE) could help target important genomic regions influencing FE. Data provided by an international dairy FE research consortium consisted of phenotypic records on dry matter intakes (DMI), milk energy (MILKE), and metabolic body weight (MBW) on 6,937 cows from 16 stations in 4 counties. Of these cows, 4,916 had genotypes on 57,347 single nucleotide polymorphism (SNP) markers. We compared a GWA analysis based on the more classical residual feed intake (RFI) model with one based on a previously proposed multiple trait (MT) approach for modeling FE using an alternative measure (DMI|MILKE,MBW). Both models were based on a single-step genomic BLUP procedure that allowed the use of phenotypes from both genotyped and nongenotyped cows. Estimated effects for single SNP markers were small and not statistically important but virtually identical for either FE measure (RFI vs. DMI|MILKE,MBW). However, upon further refining this analysis to develop joint tests within nonoverlapping 1-Mb windows, significant associations were detected between either measure of FE with a window on each of Bos taurus autosomes BTA12 and BTA26. There was, as expected, no overlap between detected genomic regions for DMI|MILKE,MBW and genomic regions influencing the energy sink traits (i.e., MILKE and MBW) because of orthogonal relationships clearly defined between the various traits. Conversely, GWA inferences on DMI can be demonstrated to be partly driven by genetic associations between DMI with these same energy sink traits, thereby having clear implications when comparing GWA studies on DMI to GWA studies on FE-like measures such as RFI.


Assuntos
Peso Corporal , Bovinos/fisiologia , Ingestão de Energia , Leite/química , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Feminino , Estudo de Associação Genômica Ampla/veterinária , Modelos Genéticos , Fenótipo
2.
J Dairy Sci ; 100(11): 9061-9075, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28843688

RESUMO

The objective of this study was to identify genomic regions and candidate genes associated with feed efficiency in lactating Holstein cows. In total, 4,916 cows with actual or imputed genotypes for 60,671 single nucleotide polymorphisms having individual feed intake, milk yield, milk composition, and body weight records were used in this study. Cows were from research herds located in the United States, Canada, the Netherlands, and the United Kingdom. Feed efficiency, defined as residual feed intake (RFI), was calculated within location as the residual of the regression of dry matter intake (DMI) on milk energy (MilkE), metabolic body weight (MBW), change in body weight, and systematic effects. For RFI, DMI, MilkE, and MBW, bivariate analyses were performed considering each trait as a separate trait within parity group to estimate variance components and genetic correlations between them. Animal relationships were established using a genomic relationship matrix. Genome-wide association studies were performed separately by parity group for RFI, DMI, MilkE, and MBW using the Bayes B method with a prior assumption that 1% of single nucleotide polymorphisms have a nonzero effect. One-megabase windows with greatest percentage of the total genetic variation explained by the markers (TGVM) were identified, and adjacent windows with large proportion of the TGVM were combined and reanalyzed. Heritability estimates for RFI were 0.14 (±0.03; ±SE) in primiparous cows and 0.13 (±0.03) in multiparous cows. Genetic correlations between primiparous and multiparous cows were 0.76 for RFI, 0.78 for DMI, 0.92 for MBW, and 0.61 for MilkE. No single 1-Mb window explained a significant proportion of the TGVM for RFI; however, after combining windows, significance was met on Bos taurus autosome 27 in primiparous cows, and nearly reached on Bos taurus autosome 4 in multiparous cows. Among other genes, these regions contain ß-3 adrenergic receptor and the physiological candidate gene, leptin, respectively. Between the 2 parity groups, 3 of the 10 windows with the largest effects on DMI neighbored windows affecting RFI, but were not in the top 10 regions for MilkE or MBW. This result suggests a genetic basis for feed intake that is unrelated to energy consumption required for milk production or expected maintenance as determined by MBW. In conclusion, feed efficiency measured as RFI is a polygenic trait exhibiting a dynamic genetic basis and genetic variation distinct from that underlying expected maintenance requirements and milk energy output.


Assuntos
Ração Animal , Bovinos/psicologia , Ingestão de Alimentos , Lactação , Animais , Teorema de Bayes , Peso Corporal/genética , Bovinos/genética , Ingestão de Alimentos/genética , Feminino , Variação Genética , Genoma , Estudo de Associação Genômica Ampla/veterinária , Leite/metabolismo , Paridade , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez
3.
J Dairy Sci ; 100(3): 2007-2016, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28109605

RESUMO

Feed efficiency in dairy cattle has gained much attention recently. Due to the cost-prohibitive measurement of individual feed intakes, combining data from multiple countries is often necessary to ensure an adequate reference population. It may then be essential to model genetic heterogeneity when making inferences about feed efficiency or selecting efficient cattle using genomic information. In this study, we constructed a marker × environment interaction model that decomposed marker effects into main effects and interaction components that were specific to each environment. We compared environment-specific variance component estimates and prediction accuracies from the interaction model analyses, an across-environment analyses ignoring population stratification, and a within-environment analyses using an international feed efficiency data set. Phenotypes included residual feed intake, dry matter intake, net energy in milk, and metabolic body weight from 3,656 cows measured in 3 broadly defined environments: North America (NAM), the Netherlands (NLD), and Scotland (SAC). Genotypic data included 57,574 single nucleotide polymorphisms per animal. The interaction model gave the highest prediction accuracy for metabolic body weight, which had the largest estimated heritabilities ranging from 0.37 to 0.55. The within-environment model performed the best when predicting residual feed intake, which had the lowest estimated heritabilities ranging from 0.13 to 0.41. For traits (dry matter intake and net energy in milk) with intermediate estimated heritabilities (0.21 to 0.50 and 0.17 to 0.53, respectively), performance of the 3 models was comparable. Genomic correlations between environments also were computed using variance component estimates from the interaction model. Averaged across all traits, genomic correlations were highest between NAM and NLD, and lowest between NAM and SAC. In conclusion, the interaction model provided a novel way to evaluate traits measured in multiple environments in which genetic heterogeneity may exist. This model allowed estimation of environment-specific parameters and provided genomic predictions that approached or exceeded the accuracy of competing within- or across-environment models.


Assuntos
Interação Gene-Ambiente , Lactação/genética , Leite , Animais , Peso Corporal , Bovinos , Ingestão de Alimentos/genética , Feminino , Heterogeneidade Genética , Genótipo
4.
J Dairy Sci ; 100(1): 412-427, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27865511

RESUMO

Feed efficiency (FE), characterized as the fraction of feed nutrients converted into salable milk or meat, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or partial efficiencies (PE) involving the conversion of dry matter intake to milk energy and metabolic body weight may be highly heterogeneous across environments or management scenarios. In this study, a hierarchical Bayesian multivariate mixed model was proposed to jointly infer upon such heterogeneity at both genetic and nongenetic levels on PE and variance components (VC). The heterogeneity was modeled by embedding mixed effects specifications on PE and VC in addition to those directly specified on the component traits. We validated the model by simulation and applied it to a joint analysis of a dairy FE consortium data set with 5,088 Holstein cows from 13 research stations in Canada, the Netherlands, the United Kingdom, and the United States. Although no differences were detected among research stations for PE at the genetic level, some evidence was found of heterogeneity in residual PE. Furthermore, substantial heterogeneity in VC across stations, parities, and ration was observed with heritability estimates of FE ranging from 0.16 to 0.46 across stations.


Assuntos
Ração Animal , Teorema de Bayes , Lactação/genética , Ração Animal/economia , Animais , Bovinos , Feminino , Leite/metabolismo , Paridade , Fenótipo
5.
J Dairy Sci ; 99(6): 4941-4954, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27085407

RESUMO

Feed efficiency, as defined by the fraction of feed energy or dry matter captured in products, has more than doubled for the US dairy industry in the past 100 yr. This increased feed efficiency was the result of increased milk production per cow achieved through genetic selection, nutrition, and management with the desired goal being greater profitability. With increased milk production per cow, more feed is consumed per cow, but a greater portion of the feed is partitioned toward milk instead of maintenance and body growth. This dilution of maintenance has been the overwhelming driver of enhanced feed efficiency in the past, but its effect diminishes with each successive increment in production relative to body size and therefore will be less important in the future. Instead, we must also focus on new ways to enhance digestive and metabolic efficiency. One way to examine variation in efficiency among animals is residual feed intake (RFI), a measure of efficiency that is independent of the dilution of maintenance. Cows that convert feed gross energy to net energy more efficiently or have lower maintenance requirements than expected based on body weight use less feed than expected and thus have negative RFI. Cows with low RFI likely digest and metabolize nutrients more efficiently and should have overall greater efficiency and profitability if they are also healthy, fertile, and produce at a high multiple of maintenance. Genomic technologies will help to identify these animals for selection programs. Nutrition and management also will continue to play a major role in farm-level feed efficiency. Management practices such as grouping and total mixed ration feeding have improved rumen function and therefore efficiency, but they have also decreased our attention on individual cow needs. Nutritional grouping is key to helping each cow reach its genetic potential. Perhaps new computer-driven technologies, combined with genomics, will enable us to optimize management for each individual cow within a herd, or to optimize animal selection to match management environments. In the future, availability of feed resources may shift as competition for land increases. New approaches combining genetic, nutrition, and other management practices will help optimize feed efficiency, profitability, and environmental sustainability.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Bovinos/genética , Animais , Indústria de Laticínios , Dieta/veterinária , Feminino , Fertilidade , Genômica , Técnicas de Genotipagem , Leite/química
6.
J Dairy Sci ; 99(1): 443-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547641

RESUMO

To include feed-intake-related traits in the breeding goal, accurate estimates of genetic parameters of feed intake, and its correlations with other related traits (i.e., production, conformation) are required to compare different options. However, the correlations between feed intake and conformation traits can vary depending on the population. Therefore, the objective was to estimate genetic correlations between 6 feed-intake-related traits and 7 conformation traits within dairy cattle from 2 countries, the Netherlands (NL) and the United States (US). The feed-intake-related traits were dry matter intake (DMI), residual feed intake (RFI), milk energy output (MilkE), milk yield (MY), body weight (BW), and metabolic body weight (MBW). The conformation traits were stature (ST), chest width (CW), body depth (BD), angularity (ANG), rump angle (RA), rump width (RW), and body condition score (BCS). Feed intake data were available for 1,665 cows in NL and for 1,920 cows in US, from 83 nutritional experiments (48 in NL and 35 in US) conducted between 1991 and 2011 in NL and between 2007 and 2013 in US. Additional conformation records from relatives of the animals with DMI records were added to the database, giving a total of 37,241 cows in NL and 28,809 in US with conformation trait information. Genetic parameters were estimated using bivariate animal model analyses. The model included the following fixed effects for feed-intake-related traits: location by experiment-ration, age of cow at calving modeled with a second order polynomial by parity class, location by year-season, and days in milk, and these fixed effects for the conformation traits: herd by classification date, age of cow at classification, and lactation stage at classification. Both models included additive genetic and residual random effects. The highest estimated genetic correlations involving DMI were with CW in both countries (NL=0.45 and US=0.61), followed by ST (NL=0.33 and US=0.57), BD (NL=0.26 and US=0.49), and BCS (NL=0.24 and US=0.46). The MilkE and MY were moderately correlated with ANG in both countries (0.33 and 0.47 in NL, and 0.36 and 0.48 in US). Finally, BW was highly correlated with CW (0.77 in NL and 0.84 in US) and with BCS (0.83 in NL and 0.85 in US). Feed-intake-related traits were moderately to highly genetically correlated with conformation traits (ST, CW, BD, and BCS) in both countries, making them potentially useful as predictors of DMI.


Assuntos
Constituição Corporal/genética , Bovinos/genética , Ingestão de Alimentos/genética , Leite/metabolismo , Ração Animal , Animais , Peso Corporal , Cruzamento , Bovinos/fisiologia , Comportamento Alimentar , Feminino , Lactação , Países Baixos , Paridade , Fenótipo , Gravidez , Estados Unidos
7.
J Dairy Sci ; 98(11): 8195-200, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319760

RESUMO

The objective of this study was to estimate genetic parameters for dry matter intake (DMI) in prepartum nonlactating and in lactating Holstein cows. Measurements were recorded on cows from Iowa State University (ISU) and the University of Florida (UF) dairy herds. Individual feed intake data were recorded daily at ISU from approximately 30 d prepartum through 150 d in milk (DIM). Individual intakes from cows at UF were recorded for approximately 42 d pre- and postpartum. Prepartum DMI traits were defined as DMI on d -15 (multiparous) or d -8 (primiparous) relative to calving date (DRYDMI), DMI on d -1 before parturition (CALVEDMI), and the negative of the slope of a regression line fitted through the last 14 (multiparous) or 7 (primiparous) days before calving (DEC). Lactation DMI traits were defined as DMI at 30 DIM (DMI30) and 100 DIM (DMI100; ISU data only). The final data set included 245 primiparous and 221 multiparous cows from ISU, and 125 multiparous cows from UF. Heritability estimates were 0.43, 0.64, 0.32, and 0.62 for DRYDMI, CALVEDMI, DEC, and DMI30, respectively. The estimate of heritability for DMI100 (ISU only) was 0.52. The genetic correlation between DRYDMI and DMI30 was 0.97. Thus, DMI prepartum is a moderately heritable trait that is highly correlated with intake during early lactation. Genetic correlations between DEC and DMI during lactation were lower and similar to standard error estimates (-0.24 ± 0.22 for DEC and DMI30 for combined data, and -0.13 ± 0.27 for DEC and DMI100 in ISU data). Thus, selection for altered DMI during lactation may not dramatically affect the depression in intake that occurs before parturition.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/genética , Bovinos/genética , Dieta/veterinária , Animais , Feminino , Lactação , Leite/metabolismo , Paridade , Período Pós-Parto/fisiologia
8.
J Dairy Sci ; 98(12): 8732-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433410

RESUMO

Heat stress (HS) affects numerous physiological processes including nutrient partitioning and lipid metabolism. Objectives of this study were to evaluate how acute HS affects lipid metabolism in subcutaneous adipose tissue of dairy cattle. Adipose tissue biopsies were performed on Holstein cows for bovine primary adipocyte isolation and cultured at either 42°C (HS) or 37°C (thermal neutral, TN). Adipocytes were incubated with increasing isoproterenol (ISO), and with increasing concentrations of insulin in the presence of ISO to evaluate changes in lipolysis. Incorporation of radioactive acetate into lipids was measured as an indicator of lipogenesis. Abundance and phosphorylation of several lipolytic and lipogenic proteins were also measured. Adipocytes exposed to HS had an elevated maximal response to ISO and were more sensitive to lipolytic stimulation by ISO compared with cells cultured at TN. Thermal treatment did not affect the antilipolytic effects of insulin in the presence of ISO. Lipogenesis measured as acetate incorporation was not altered by HS, but a temperature by insulin interaction was observed for the regulation of acetyl CoA carboxylase, such that the presence of insulin resulted in a reduction in phosphorylation of acetyl CoA carboxylase in adipocytes cultured at TN but not HS conditions. Results of this study demonstrate that acute HS has a direct effect on the regulation of lipolysis and the rate-limiting enzyme of lipogenesis in isolated bovine adipocytes.


Assuntos
Adipócitos/metabolismo , Bovinos/metabolismo , Temperatura Alta , Metabolismo dos Lipídeos/fisiologia , Acetil-CoA Carboxilase/metabolismo , Adipócitos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Feminino , Insulina/farmacologia , Isoproterenol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fosforilação , Gordura Subcutânea/metabolismo
9.
J Dairy Sci ; 98(9): 6535-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26210274

RESUMO

Genetic improvement of feed efficiency (FE) in dairy cattle requires greater attention given increasingly important resource constraint issues. A widely accepted yet occasionally contested measure of FE in dairy cattle is residual feed intake (RFI). The use of RFI is limiting for several reasons, including interpretation, differences in recording frequencies between the various component traits that define RFI, and potential differences in genetic versus nongenetic relationships between dry matter intake (DMI) and FE component traits. Hence, analyses focusing on DMI as the response are often preferred. We propose an alternative multiple-trait (MT) modeling strategy that exploits the Cholesky decomposition to provide a potentially more robust measure of FE. We demonstrate that our proposed FE measure is identical to RFI provided that genetic and nongenetic relationships between DMI and component traits of FE are identical. We assessed both approaches (MT and RFI) by simulation as well as by application to 26,383 weekly records from 50 to 200 d in milk on 2,470 cows from a dairy FE consortium study involving 7 institutions. Although the proposed MT model fared better than the RFI model when simulated genetic and nongenetic associations between DMI and FE component traits were substantially different from each other, no meaningful differences were found in predictive performance between the 2 models when applied to the consortium data.


Assuntos
Ração Animal , Dieta/veterinária , Modelos Genéticos , Animais , Bovinos , Ingestão de Energia , Feminino , Fenótipo , Reprodutibilidade dos Testes
10.
J Dairy Sci ; 98(9): 6522-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188577

RESUMO

With the aim of increasing the accuracy of genomic estimated breeding values for dry matter intake (DMI) in Holstein-Friesian dairy cattle, data from 10 research herds in Europe, North America, and Australasia were combined. The DMI records were available on 10,701 parity 1 to 5 records from 6,953 cows, as well as on 1,784 growing heifers. Predicted DMI at 70 d in milk was used as the phenotype for the lactating animals, and the average DMI measured during a 60- to 70-d test period at approximately 200 d of age was used as the phenotype for the growing heifers. After editing, there were 583,375 genetic markers obtained from either actual high-density single nucleotide polymorphism (SNP) genotypes or imputed from 54,001 marker SNP genotypes. Genetic correlations between the populations were estimated using genomic REML. The accuracy of genomic prediction was evaluated for the following scenarios: (1) within-country only, by fixing the correlations among populations to zero, (2) using near-unity correlations among populations and assuming the same trait in each population, and (3) a sharing data scenario using estimated genetic correlations among populations. For these 3 scenarios, the data set was divided into 10 sub-populations stratified by progeny group of sires; 9 of these sub-populations were used (in turn) for the genomic prediction and the tenth was used for calculation of the accuracy (correlation adjusted for heritability). A fourth scenario to quantify the benefit for countries that do not record DMI was investigated (i.e., having an entire country as the validation population and excluding this country in the development of the genomic predictions). The optimal scenario, which was sharing data, resulted in a mean prediction accuracy of 0.44, ranging from 0.37 (Denmark) to 0.54 (the Netherlands). Assuming near-unity among-country genetic correlations, the mean accuracy of prediction dropped to 0.40, and the mean within-country accuracy was 0.30. If no records were available in a country, the accuracy based on the other populations ranged from 0.23 to 0.53 for the milking cows, but were only 0.03 and 0.19 for Australian and New Zealand heifers, respectively; the overall mean prediction accuracy was 0.37. Therefore, there is a benefit in collaboration, because phenotypic information for DMI from other countries can be used to augment the accuracy of genomic evaluations of individual countries.


Assuntos
Ração Animal/análise , Ingestão de Energia , Genômica/métodos , Cooperação Internacional , Animais , Austrália , Cruzamento , Canadá , Bovinos , Dinamarca , Feminino , Marcadores Genéticos , Genótipo , Alemanha , Irlanda , Lactação , Leite , Modelos Teóricos , Países Baixos , Nova Zelândia , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
J Dairy Sci ; 98(3): 2013-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582589

RESUMO

Our long-term objective is to develop breeding strategies for improving feed efficiency in dairy cattle. In this study, phenotypic data were pooled across multiple research stations to facilitate investigation of the genetic and nongenetic components of feed efficiency in Holstein cattle. Specifically, the heritability of residual feed intake (RFI) was estimated and heterogeneous relationships between RFI and traits relating to energy utilization were characterized across research stations. Milk, fat, protein, and lactose production converted to megacalories (milk energy; MilkE), dry matter intakes (DMI), and body weights (BW) were collected on 6,824 lactations from 4,893 Holstein cows from research stations in Scotland, the Netherlands, and the United States. Weekly DMI, recorded between 50 to 200 d in milk, was fitted as a linear function of MilkE, BW0.75, and change in BW (ΔBW), along with parity, a fifth-order polynomial on days in milk (DIM), and the interaction between this polynomial and parity in a first-stage model. The residuals from this analysis were considered to be a phenotypic measure of RFI. Estimated partial regression coefficients of DMI on MilkE and on BW0.75 ranged from 0.29 to 0.47 kg/Mcal for MilkE across research stations, whereas estimated partial regression coefficients on BW0.75 ranged from 0.06 to 0.16 kg/kg0.75. Estimated partial regression coefficients on ΔBW ranged from 0.06 to 0.39 across stations. Heritabilities for country-specific RFI were based on fitting second-stage random regression models and ranged from 0.06 to 0.24 depending on DIM. The overall heritability estimate across all research stations and all DIM was 0.15±0.02, whereas an alternative analysis based on combining the first- and second-stage model as 1 model led to an overall heritability estimate of 0.18±0.02. Hence future genomic selection programs on feed efficiency appear to be promising; nevertheless, care should be taken to allow for potentially heterogeneous variance components and partial relationships between DMI and other energy sink traits across environments when determining RFI.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Metabolismo Energético , Variação Genética , Animais , Cruzamento , Bovinos/genética , Indústria de Laticínios/estatística & dados numéricos , Digestão , Feminino , Hereditariedade , Países Baixos , Gravidez , Escócia , Estados Unidos
12.
J Dairy Sci ; 98(4): 2727-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660745

RESUMO

Prior to genomic selection on a trait, a reference population needs to be established to link marker genotypes with phenotypes. For costly and difficult-to-measure traits, international collaboration and sharing of data between disciplines may be necessary. Our aim was to characterize the combining of data from nutrition studies carried out under similar climate and management conditions to estimate genetic parameters for feed efficiency. Furthermore, we postulated that data from the experimental cohorts within these studies can be used to estimate the net energy of lactation (NE(L)) densities of diets, which can provide estimates of energy intakes for use in the calculation of the feed efficiency metric, residual feed intake (RFI), and potentially reduce the effect of variation in energy density of diets. Individual feed intakes and corresponding production and body measurements were obtained from 13 Midwestern nutrition experiments. Two measures of RFI were considered, RFI(Mcal) and RFI(kg), which involved the regression of NE(L )intake (Mcal/d) or dry matter intake (DMI; kg/d) on 3 expenditures: milk energy, energy gained or lost in body weight change, and energy for maintenance. In total, 677 records from 600 lactating cows between 50 and 275 d in milk were used. Cows were divided into 46 cohorts based on dietary or nondietary treatments as dictated by the nutrition experiments. The realized NE(L) densities of the diets (Mcal/kg of DMI) were estimated for each cohort by totaling the average daily energy used in the 3 expenditures for cohort members and dividing by the cohort's total average daily DMI. The NE(L) intake for each cow was then calculated by multiplying her DMI by her cohort's realized energy density. Mean energy density was 1.58 Mcal/kg. Heritability estimates for RFI(kg), and RFI(Mcal) in a single-trait animal model did not differ at 0.04 for both measures. Information about realized energy density could be useful in standardizing intake data from different climate conditions or management systems, as well as investigating potential genotype by diet interactions.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/genética , Bovinos/genética , Dieta/veterinária , Lactação/genética , Animais , Bovinos/fisiologia , Ingestão de Energia , Feminino , Genoma , Lactação/fisiologia
13.
J Dairy Sci ; 97(5): 2847-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24630665

RESUMO

Lipid metabolism plays a crucial role in the adaptation of dairy cows to periods of energy insufficiency. The objective of the current study was to determine if lipolytic proteins are consistently regulated when energy mobilization is stimulated by different factors. We evaluated 2 models of altered energy balance in mid-lactation Holstein cows, including feed restriction (FR) and administration of bovine growth hormone (GH), by quantifying the abundance and (or) phosphorylation of hormone-sensitive lipase (HSL), perilipin (PLIN), and adipose triglyceride lipase (ATGL). For GH administration, adipose tissue and blood samples were collected 4d before and 3 and 7d after administration of GH (n=20 cows). Similarly, adipose and blood samples were obtained 6d before and 1 and 4d after initiation of FR (n=18 cows). Estimated net energy balance decreased and nonesterified fatty acid concentration increased in both experimental models. Decreased ATGL and PLIN protein abundance was observed with GH administration and FR. Additionally, the abundance of phosphorylated HSLSer565 decreased in both models. Decreased abundance of phosphorylated PLIN was observed with GH administration, but not FR. Decreased ATGL protein abundance appears to be a consistent response to energy insufficiency in lactating cows, as this response was also described with negative energy balance at the onset of lactation. In contrast, the abundance of PLIN protein and phosphorylation of HSL using antibodies targeting serine residue 565 of HSL (HSLSer565) were altered in the current research, but not at the onset of lactation. Our findings demonstrate that lipolysis is altered through the regulation of multiple proteins, and that this regulation differs according to physiological state in lactating cows.


Assuntos
Bovinos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Privação de Alimentos/fisiologia , Hormônio do Crescimento/farmacologia , Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Animais , Proteínas de Transporte , Bovinos/sangue , Metabolismo Energético/fisiologia , Ácidos Graxos não Esterificados/sangue , Feminino , Lactação/fisiologia , Lipólise/fisiologia , Perilipina-1 , Fosfoproteínas , Fosforilação/fisiologia , Esterol Esterase/genética , Esterol Esterase/metabolismo
14.
J Dairy Sci ; 97(8): 5265-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24913645

RESUMO

Dehorning in cattle has been associated with behavioral, physiological, and neuroendocrine responses indicative of pain. Unaddressed, the pain associated with a routine production procedure could contribute to a negative public perception of livestock production practices. Alternative considerations of dehorning include the selection of polled cattle within herds, thereby avoiding pain and production loss. As polledness results from an autosomal dominant pattern of inheritance, genetic selection for polled cattle could reduce the prevalence of the horned trait. Herein we discuss 3 strategies to incorporate polled genetics into a cow herd and the estimated impact on the overall genetic merit of the herd. Furthermore, the availability and genetic merit of polled artificial insemination bulls in the United States is summarized. Both Holstein and Jersey dairy bulls registered with the National Association of Animal Breeders from December 2010 through April 2013 were queried. Polled bulls were identified as either being homozygous (PP) or heterozygous (Pp) and the average net merit (NM) predicted transmitting ability (PTA) of each sire group was calculated. The percentage of polled calves born each year over a 10-yr period was calculated for the following 3 scenarios: (A) various percentages of horned cows were randomly mated to Pp bulls, (B) various percentages of horned cows were preferentially mated to Pp bulls, and (C) horned cows were selectively mated to PP bulls, heterozygous cows to Pp bulls, and homozygous polled cows to horned bulls. Additionally, the change in NM PTA of the cow herd was calculated over the same period. The highest percentage of polled animals (87%) was achieved in scenario C. An evaluation of the herd NM PTA highlights the trade-offs associated with increasing polled genetics. Given the current genetic merit of horned and polled bulls, increasing the percentage of polled calves will decrease the NM PTA in Holstein, but may have minimal impact in Jersey herds. Decisions regarding selective breeding to increase polled genetics will need to be evaluated in the context of production objectives, cost of dehorning, and impact on overall genetic merit.


Assuntos
Cruzamento , Bovinos/genética , Indústria de Laticínios/métodos , Animais , Feminino , Heterozigoto , Homozigoto , Cornos/crescimento & desenvolvimento , Inseminação Artificial/veterinária , Masculino , Estados Unidos
15.
J Dairy Sci ; 97(3): 1799-811, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24472132

RESUMO

Combining data from research herds may be advantageous, especially for difficult or expensive-to-measure traits (such as dry matter intake). Cows in research herds are often genotyped using low-density single nucleotide polymorphism (SNP) panels. However, the precision of quantitative trait loci detection in genome-wide association studies and the accuracy of genomic selection may increase when the low-density genotypes are imputed to higher density. Genotype data were available from 10 research herds: 5 from Europe [Denmark, Germany, Ireland, the Netherlands, and the United Kingdom (UK)], 2 from Australasia (Australia and New Zealand), and 3 from North America (Canada and the United States). Heifers from the Australian and New Zealand research herds were already genotyped at high density (approximately 700,000 SNP). The remaining genotypes were imputed from around 50,000 SNP to 700,000 using 2 reference populations. Although it was not possible to use a combined reference population, which would probably result in the highest accuracies of imputation, differences arising from using 2 high-density reference populations on imputing 50,000-marker genotypes of 583 animals (from the UK) were quantified. The European genotypes (n=4,097) were imputed as 1 data set, using a reference population of 3,150 that included genotypes from 835 Australian and 1,053 New Zealand females, with the remainder being males. Imputation was undertaken using population-wide linkage disequilibrium with no family information exploited. The UK animals were also included in the North American data set (n=1,579) that was imputed to high density using a reference population of 2,018 bulls. After editing, 591,213 genotypes on 5,999 animals from 10 research herds remained. The correlation between imputed allele frequencies of the 2 imputed data sets was high (>0.98) and even stronger (>0.99) for the UK animals that were part of each imputation data set. For the UK genotypes, 2.2% were imputed differently in the 2 high-density reference data sets used. Only 0.025% of these were homozygous switches. The number of discordant SNP was lower for animals that had sires that were genotyped. Discordant imputed SNP genotypes were most common when a large difference existed in allele frequency between the 2 imputed genotype data sets. For SNP that had ≥ 20% discordant genotypes, the difference between imputed data sets of allele frequencies of the UK (imputed) genotypes was 0.07, whereas the difference in allele frequencies of the (reference) high-density genotypes was 0.30. In fact, regions existed across the genome where the frequency of discordant SNP was higher. For example, on chromosome 10 (centered on 520,948 bp), 52 SNP (out of a total of 103 SNP) had ≥ 20% discordant SNP. Four hundred and eight SNP had more than 20% discordant genotypes and were removed from the final set of imputed genotypes. We concluded that both discordance of imputed SNP genotypes and differences in allele frequencies, after imputation using different reference data sets, may be used to identify and remove poorly imputed SNP.


Assuntos
Bovinos/genética , Marcadores Genéticos , Genótipo , Animais , Australásia , Europa (Continente) , Feminino , Frequência do Gene , Estudos de Associação Genética , Genoma , Desequilíbrio de Ligação , Masculino , América do Norte , Fenótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
16.
J Dairy Sci ; 97(6): 3894-905, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24731627

RESUMO

Feed represents a large proportion of the variable costs in dairy production systems. The omission of feed intake measures explicitly from national dairy cow breeding objectives is predominantly due to a lack of information from which to make selection decisions. However, individual cow feed intake data are available in different countries, mostly from research or nucleus herds. None of these data sets are sufficiently large enough on their own to generate accurate genetic evaluations. In the current study, we collate data from 10 populations in 9 countries and estimate genetic parameters for dry matter intake (DMI). A total of 224,174 test-day records from 10,068 parity 1 to 5 records of 6,957 cows were available, as well as records from 1,784 growing heifers. Random regression models were fit to the lactating cow test-day records and predicted feed intake at 70 d postcalving was extracted from these fitted profiles. The random regression model included a fixed polynomial regression for each lactation separately, as well as herd-year-season of calving and experimental treatment as fixed effects; random effects fit in the model included individual animal deviation from the fixed regression for each parity as well as mean herd-specific deviations from the fixed regression. Predicted DMI at 70 d postcalving was used as the phenotype for the subsequent genetic analyses undertaken using an animal repeatability model. Heritability estimates of predicted cow feed intake 70 d postcalving was 0.34 across the entire data set and varied, within population, from 0.08 to 0.52. Repeatability of feed intake across lactations was 0.66. Heritability of feed intake in the growing heifers was 0.20 to 0.34 in the 2 populations with heifer data. The genetic correlation between feed intake in lactating cows and growing heifers was 0.67. A combined pedigree and genomic relationship matrix was used to improve linkages between populations for the estimation of genetic correlations of DMI in lactating cows; genotype information was available on 5,429 of the animals. Populations were categorized as North America, grazing, other low input, and high input European Union. Albeit associated with large standard errors, genetic correlation estimates for DMI between populations varied from 0.14 to 0.84 but were stronger (0.76 to 0.84) between the populations representative of high-input production systems. Genetic correlations with the grazing populations were weak to moderate, varying from 0.14 to 0.57. Genetic evaluations for DMI can be undertaken using data collated from international populations; however, genotype-by-environment interactions with grazing production systems need to be considered.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios , Comportamento Alimentar , Genótipo , Animais , Austrália , Cruzamento , Bovinos/genética , Europa (Continente) , Feminino , Lactação , América do Norte , Fenótipo , Análise de Regressão
17.
J Dairy Sci ; 96(10): 6716-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23932129

RESUMO

Feed efficiency is an economically important trait in the beef and dairy cattle industries. Residual feed intake (RFI) is a measure of partial efficiency that is independent of production level per unit of body weight. The objective of this study was to identify significant associations between single nucleotide polymorphism (SNP) markers and RFI in dairy cattle using the Random Forests (RF) algorithm. Genomic data included 42,275 SNP genotypes for 395 Holstein cows, whereas phenotypic measurements were daily RFI from 50 to 150 d postpartum. Residual feed intake was defined as the difference between an animal's feed intake and the average intake of its cohort, after adjustment for year and season of calving, year and season of measurement, age at calving nested within parity, days in milk, milk yield, body weight, and body weight change. Random Forests is a widely used machine-learning algorithm that has been applied to classification and regression problems. By analyzing the tree structures produced within RF, the 25 most frequent pairwise SNP interactions were reported as possible epistatic interactions. The importance scores that are generated by RF take into account both main effects of variables and interactions between variables, and the most negative value of all importance scores can be used as the cutoff level for declaring SNP effects as significant. Ranking by importance scores, 188 SNP surpassed the threshold, among which 38 SNP were mapped to RFI quantitative trait loci (QTL) regions reported in a previous study in beef cattle, and 2 SNP were also detected by a genome-wide association study in beef cattle. The ratio of number of SNP located in RFI QTL to the total number of SNP in the top 188 SNP chosen by RF was significantly higher than in all 42,275 whole-genome markers. Pathway analysis indicated that many of the top 188 SNP are in genomic regions that contain annotated genes with biological functions that may influence RFI. Frequently occurring ancestor-descendant SNP pairs can be explored as possible epistatic effects for further study. The importance scores generated by RF can be used effectively to identify large additive or epistatic SNP and informative QTL. The consistency in results of our study and previous studies in beef cattle indicates that the genetic architecture of RFI in dairy cattle might be similar to that of beef cattle.


Assuntos
Ingestão de Alimentos/genética , Epistasia Genética , Carne , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Algoritmos , Ração Animal , Animais , Inteligência Artificial , Peso Corporal/genética , Bovinos , Feminino , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Distribuição Aleatória
18.
J Dairy Sci ; 96(4): 2605-2616, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403193

RESUMO

Milk is known to contain high concentrations of saturated fatty acids-such as palmitic (16:0), myristic (14:0), and lauric (12:0) acids-that can raise plasma cholesterol in humans, making their presence in milk undesirable. The main objective of our candidate gene study was to develop genetic markers that can be used to improve the healthfulness of bovine milk. The sterol regulatory element binding transcription factor 1 (SREBF1) known to regulate the transcription of lipogenic genes together with SREBF chaperone and insulin induced gene 1 were the candidate genes. The results showed significant association of the overall SREBF1 haplotypes with milk production and variations in lauric (12:0) and myristic (14:0) acid concentrations in milk. Haplotype H1 of SREBF1 was the most desirable to improve milk healthfulness because it was significantly associated with lower lauric (12:0) and myristic (14:0) acid concentrations compared with haplotype H3 of SREBF1, and lower lauric acid (12:0) concentration compared with haplotype H2 of SREBF1. Haplotype H1 of SREBF1, however, was significantly associated with lower milk production compared with haplotype H3 of SREBF1. We did not detect any significant associations between genetic polymorphisms in insulin induced gene 1 (INSIG1) and SREBF chaperone and milk fatty acid composition. In conclusion, genetic polymorphisms in SREBF1 can be used to develop genetic tools for the selection of animals producing milk with healthier fatty acid composition.


Assuntos
Bovinos/genética , Ácidos Graxos/análise , Leite/química , Polimorfismo Genético/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Feminino , Marcadores Genéticos/genética , Haplótipos , Promoção da Saúde , Lactação/genética , Ácidos Láuricos/análise , Ácido Mirístico/análise , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
19.
J Dairy Sci ; 96(9): 6007-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831098

RESUMO

The main goal of this study was to develop tools for genetic selection of animals producing milk with a lower concentration of saturated fatty acids (SFA) and a higher concentration of unsaturated fatty acids (UFA). The reasons for changing milk fatty acid (FA) composition were to improve milk technological properties, such as for production of more spreadable butter, and milk nutritional value with respect to the potentially adverse effects of SFA on human health. We hypothesized that genetic polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) fatty acid transport protein gene and fatty acid binding protein (FABP)-3 and FABP-4 (FABP3 and FABP4) would affect the selectivity of FA uptake into, and FA redistribution inside, mammary epithelial cells, resulting in altered FA composition of bovine milk. The objectives of our study were to discover genetic polymorphisms in SLC27A6, FABP3, and FABP4, and to test those polymorphisms for associations with milk FA composition. The results showed that after pairwise comparisons between SLC27A6 haplotypes for significantly associated traits, haplotype H3 was significantly associated with 1.37 weight percentage (wt%) lower SFA concentration, 0.091 lower SFA:UFA ratio, and 0.17 wt% lower lauric acid (12:0) concentration, but 1.37 wt% higher UFA and 1.24 wt% higher monounsaturated fatty acid (MUFA) concentrations compared with haplotype H1 during the first 3 mo of lactation. Pairwise comparisons between FABP4 haplotypes for significantly associated traits showed that haplotype H3 was significantly associated with 1.04 wt% lower SFA concentration, 0.079 lower SFA:UFA ratio, 0.15 wt% lower lauric acid (12:0), and 0.27 wt% lower myristic acid (14:0) concentrations, but 1.04 wt% higher UFA and 0.91 wt% higher MUFA concentrations compared with haplotype H1 during the first 3 mo of lactation. Percentages of genetic variance explained by H3 versus H1 haplotype substitutions for SLC27A6 and FABP4 ranged from 2.50 to 4.86% and from 4.91 to 7.22%, respectively. Tag single nucleotide polymorphisms were identified to distinguish haplotypes H3 of SLC27A6 and FABP4 from others encompassing each gene. We found no significant associations between FABP3 haplotypes and milk FA composition. In conclusion, polymorphisms in FABP4 and SLC27A6 can be used to select for cattle producing milk with lower concentrations of SFA and higher concentrations of UFA.


Assuntos
Bovinos/genética , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/análise , Leite/química , Polimorfismo de Nucleotídeo Único/genética , Animais , Ácidos Graxos Insaturados/análise , Feminino , Genótipo , Haplótipos/genética , Masculino , Isoformas de Proteínas/genética , Característica Quantitativa Herdável , Alinhamento de Sequência/veterinária
20.
J Dairy Sci ; 95(9): 5393-5402, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22916946

RESUMO

Objectives of the current study were to estimate genetic parameters in Holstein cows for energy balance (EB) and related traits including dry matter intake (DMI), body weight (BW), body condition score (BCS), energy-corrected milk (ECM) production, and gross feed efficiency (GFE), defined as the ratio of total ECM yield to total DMI over the first 150 d of lactation. Data were recorded for the first half of lactation on 227 and 175 cows in their first or later lactation, respectively. Random regression models were fitted to longitudinal data. Also, each trait was averaged over monthly intervals and analyzed by single and multivariate animal models. Heritability estimates ranged from 0.27 to 0.63, 0.12 to 0.62, 0.12 to 0.49, 0.63 to 0.72, and 0.49 to 0.53 for DMI, ECM yield, EB, BW, and BCS, respectively, averaged over monthly intervals. Daily heritability estimates ranged from 0.18 to 0.30, 0.10 to 0.26, 0.07 to 0.22, 0.43 to 0.67, and 0.25 to 0.38 for DMI, ECM yield, EB, BW, and BCS, respectively. Estimated heritability for GFE was 0.32. The genetic correlation of EB at 10d in milk (DIM) with EB at 150 DIM was -0.19, suggesting the genetic regulation of this trait differs by stage of lactation. Positive genetic correlations were found among DMI, ECM yield, and BW averaged over monthly intervals, whereas correlations of these traits with BCS depended upon stage of lactation. Total ECM yield for the lactation was positively correlated with DMI, but a negative genetic correlation between total ECM yield and EB was found. However, the genetic correlation between total ECM yield and EB in the first month of lactation was -0.02, indicating that total production is not genetically correlated with EB during the first month of lactation, when negative EB is most closely associated with diminished fitness. The genetic correlation between GFE and EB ranged from -0.73 to -0.99, indicating that selection for more efficient cows would favor a lower energy status. However, the genetic correlation between EB in the first month of lactation and GFE calculated from 75 to 150 DIM was not significant, indicating that the unfavorable correlation between GFE and EB in early lactation may be minimized with alternative definitions of efficiency. Thus, EB, GFE and related traits will likely respond to genetic selection in Holstein cows. However, the impact of selection for improved feed efficiency on EB must be carefully considered to avoid potential negative consequences of further reductions in EB at the onset of lactation.


Assuntos
Bovinos/genética , Digestão/genética , Metabolismo Energético/genética , Característica Quantitativa Herdável , Animais , Peso Corporal/genética , Ingestão de Alimentos/genética , Feminino , Lactação/genética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA