Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Bioenerg Biomembr ; 47(1-2): 133-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25358440

RESUMO

Traumatic brain injury (TBI) is still the leading cause of disability in young adults worldwide. The major mechanisms - diffuse axonal injury, cerebral contusion, ischemic neurological damage, and intracranial hematomas have all been shown to be associated with mitochondrial dysfunction in some form. Mitochondrial dysfunction in TBI patients is an active area of research, and attempts to manipulate neuronal/astrocytic metabolism to improve outcomes have been met with limited translational success. Previously, several preclinical and clinical studies on TBI induced mitochondrial dysfunction have focused on opening of the mitochondrial permeability transition pore (PTP), consequent neurodegeneration and attempts to mitigate this degeneration with cyclosporine A (CsA) or analogous drugs, and have been unsuccessful. Recent insights into normal mitochondrial dynamics and into diseases such as inherited mitochondrial neuropathies, sepsis and organ failure could provide novel opportunities to develop mitochondria-based neuroprotective treatments that could improve severe TBI outcomes. This review summarizes those aspects of mitochondrial dysfunction underlying TBI pathology with special attention to models of penetrating traumatic brain injury, an epidemic in modern American society.


Assuntos
Lesões Encefálicas/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Doenças Neurodegenerativas/metabolismo , Adulto , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/epidemiologia , Lesões Encefálicas/patologia , Humanos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia
2.
Neurotrauma Rep ; 4(1): 225-235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095855

RESUMO

Penetrating traumatic brain injury (pTBI) is increasingly survivable, but permanently disabling as adult mammalian nervous system does not regenerate. Recently, our group demonstrated transplant location-dependent neuroprotection and safety of clinical trial-grade human neural stem cell (hNSC) transplantation in a rodent model of acute pTBI. To evaluate whether longer injury-transplantation intervals marked by chronic inflammation impede engraftment, 60 male Sprague-Dawley rats were randomized to three sets. Each set was divided equally into two groups: 1) with no injury (sham) or 2) pTBI. After either 1 week (groups 1 and 2), 2 weeks (groups 3 and 4), or 4 weeks after injury (groups 5 and 6), each animal received 0.5 million hNSCs perilesionally. A seventh group of pTBI animals treated with vehicle served as the negative control. All animals were allowed to survive 12 weeks with standard chemical immunosuppression. Motor capacity was assessed pre-transplant to establish injury-induced deficit and followed by testing at 8 and 12 weeks after transplantation. Animals were euthanized, perfused, and examined for lesion size, axonal degeneration, and engraftment. Compared to vehicle, transplanted groups showed a trend for reduced lesion size and axonal injury across intervals. Remote secondary axonal injury was significantly reduced in groups 2 and 4, but not in group 6. The majority of animals showed robust engraftment independent of the injury-transplant time interval. Modest amelioration of motor deficit paralleled the axonal injury trend. In aggregate, pTBI-induced remote secondary axonal injury was resolved by early, but not delayed, hNSC transplantation.

3.
J Trauma Acute Care Surg ; 88(4): 477-485, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31626023

RESUMO

BACKGROUND: Penetrating traumatic brain injury induces chronic inflammation that drives persistent tissue loss long after injury. Absence of endogenous reparative neurogenesis and effective neuroprotective therapies render injury-induced disability an unmet need. Cell replacement via neural stem cell transplantation could potentially rebuild the tissue and alleviate penetrating traumatic brain injury disability. The optimal transplant location remains to be determined. METHODS: To test if subacute human neural stem cell (hNSC) transplant location influences engraftment, lesion expansion, and motor deficits, rats (n = 10/group) were randomized to the following four groups (uninjured and three injured): group 1 (Gr1), uninjured with cell transplants (sham+hNSCs), 1-week postunilateral penetrating traumatic brain injury, after establishing motor deficit; group 2 (Gr2), treated with vehicle (media, no cells); group 3 (Gr3), hNSCs transplanted into lesion core (intra); and group 4 (Gr4), hNSCs transplanted into tissue surrounding the lesion (peri). All animals were immunosuppressed for 12 weeks and euthanized following motor assessment. RESULTS: In Gr2, penetrating traumatic brain injury effect manifests as porencephalic cyst, 22.53 ± 2.87 (% of intact hemisphere), with p value of <0.0001 compared with uninjured Gr1. Group 3 lesion volume at 17.44 ± 2.11 did not differ significantly from Gr2 (p = 0.36), while Gr4 value, 9.17 ± 1.53, differed significantly (p = 0.0001). Engraftment and neuronal differentiation were significantly lower in the uninjured Gr1 (p < 0.05), compared with injured groups. However, there were no differences between Gr3 and Gr4. Significant increase in cortical tissue sparing (p = 0.03), including motor cortex (p = 0.005) was observed in Gr4 but not Gr3. Presence of transplant within lesion or in penumbra attenuated motor deficit development (p < 0.05) compared with Gr2. CONCLUSION: In aggregate, injury milieu supports transplanted cell proliferation and differentiation independent of location. Unexpectedly, cortical sparing is transplant location dependent. Thus, apart from cell replacement and transplant mediated deficit amelioration, transplant location-dependent neuroprotection may be key to delaying onset or preventing development of injury-induced disability. LEVEL OF EVIDENCE: Preclinical study evaluation of therapeutic intervention, level VI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Traumatismos Cranianos Penetrantes/terapia , Transtornos Motores/prevenção & controle , Células-Tronco Neurais/transplante , Neuroproteção , Animais , Encéfalo/citologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Traumatismos Cranianos Penetrantes/complicações , Traumatismos Cranianos Penetrantes/patologia , Humanos , Masculino , Transtornos Motores/etiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/patologia , Ratos , Transplante Heterólogo/métodos
4.
Front Neurol ; 10: 82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809187

RESUMO

Human neural stem cells (hNSCs) transplantation in several brain injury models has established their therapeutic potential. However, the feasibility of hNSCs transplantation is still not clear for acute subdural hematoma (ASDH) brain injury that needs external decompression. Thus, the aim of this pilot study was to test feasibility using a rat ASDH decompression model with two clinically relevant transplantation methods. Two different methods, in situ stereotactic injection and hNSC-embedded matrix seating on the brain surface, were attempted. Athymic rats were randomized to uninjured or ASDH groups (F344/NJcl-rnu/rnu, n = 7-10/group). Animals in injury group were subjected to ASDH, and received decompressive craniectomy and 1-week after decompression surgery were transplanted with green fluorescent protein (GFP)-transduced hNSCs using one of two approaches. Histopathological examinations at 4 and 8 weeks showed that the GFP-positive hNSCs survived in injured brain tissue, extended neurite-like projections resembling neural dendrites. The in situ transplantation group had greater engraftment of hNSCs than matrix embedding approach. Immunohistochemistry with doublecortin, NeuN, and GFAP at 8 weeks after transplantation showed that transplanted hNSCs remained as immature neurons and did not differentiate toward to glial cell lines. Motor function was assessed with rotarod, compared to control group (n = 10). The latency to fall from the rotarod in hNSC in situ transplanted rats was significantly higher than in control rats (median, 113 s in hNSC vs. 69 s in control, P = 0.02). This study first demonstrates the robust engraftment of in situ transplanted hNSCs in a clinically-relevant ASDH decompression rat model. Further preclinical studies with longer study duration are warranted to verify the effectiveness of hNSC transplantation in amelioration of TBI induced deficits.

5.
Behav Brain Res ; 340: 23-28, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235716

RESUMO

The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Hematoma Subdural/complicações , Hematoma Subdural/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/cirurgia , Craniectomia Descompressiva , Modelos Animais de Doenças , Hematoma Subdural/epidemiologia , Hematoma Subdural/cirurgia , Humanos , Ratos , Traumatismo por Reperfusão/epidemiologia , Traumatismo por Reperfusão/etiologia
6.
J Neurotrauma ; 35(14): 1681-1693, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29439605

RESUMO

Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1ß mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1ß, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1ß, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Traumatismos Cranianos Penetrantes/imunologia , Inflamassomos/imunologia , Microglia/imunologia , Animais , Lesões Encefálicas Traumáticas/patologia , Traumatismos Cranianos Penetrantes/patologia , Masculino , Microglia/patologia , Ratos , Ratos Sprague-Dawley
7.
Front Neurol ; 9: 1097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30719019

RESUMO

Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.

8.
J Neurotrauma ; 34(11): 1981-1995, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249550

RESUMO

Penetrating traumatic brain injury (PTBI) is one of the major cause of death and disability worldwide. Previous studies with penetrating ballistic-like brain injury (PBBI), a PTBI rat model revealed widespread perilesional neurodegeneration, similar to that seen in humans following gunshot wound to the head, which is unmitigated by any available therapies to date. Therefore, we evaluated human neural stem cell (hNSC) engraftment to putatively exploit the potential of cell therapy that has been seen in other central nervous system injury models. Toward this objective, green fluorescent protein (GFP) labeled hNSC (400,000 per animal) were transplanted in immunosuppressed Sprague-Dawley (SD), Fisher, and athymic (ATN) PBBI rats 1 week after injury. Tacrolimus (3 mg/kg 2 days prior to transplantation, then 1 mg/kg/day), methylprednisolone (10 mg/kg on the day of transplant, 1 mg/kg/week thereafter), and mycophenolate mofetil (30 mg/kg/day) for 7 days following transplantation were used to confer immunosuppression. Engraftment in SD and ATN was comparable at 8 weeks post-transplantation. Evaluation of hNSC differentiation and distribution revealed increased neuronal differentiation of transplanted cells with time. At 16 weeks post-transplantation, neither cell proliferation nor glial lineage markers were detected. Transplanted cell morphology was similar to that of neighboring host neurons, and there was relatively little migration of cells from the peritransplant site. By 16 weeks, GFP-positive processes extended both rostrocaudally and bilaterally into parenchyma, spreading along host white matter tracts, traversing the internal capsule, and extending ∼13 mm caudally from transplantation site reaching into the brainstem. In a Morris water maze test at 8 weeks post-transplantation, animals with transplants had shorter latency to platform than vehicle-treated animals. However, weak injury-induced cognitive deficits in the control group at the delayed time point confounded benefits of durable engraftment and neuronal differentiation. Therefore, these results justify further studies to progress towards clinical translation of hNSC therapy for PTBI.


Assuntos
Diferenciação Celular/fisiologia , Transtornos Cognitivos/terapia , Traumatismos Cranianos Penetrantes/terapia , Células-Tronco Neurais/transplante , Neurônios/fisiologia , Transplante de Células-Tronco/métodos , Animais , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Transtornos Cognitivos/diagnóstico , Traumatismos Cranianos Penetrantes/diagnóstico , Humanos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Ratos Sprague-Dawley
9.
Methods Mol Biol ; 1462: 413-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604731

RESUMO

Cerebral microdialysis (MD) is a fine laboratory technique which has been established for studying physiological, pharmacological, and pathological changes in the experimental studies of traumatic brain injury (TBI). This technique has also been well translated and widely applied to clinical bedside monitoring to provide pathophysiological analysis in severe TBI patients. The MD technique is thus well suited for straightforward translation from basic science to clinical application.In this chapter, we describe our evaluation of MD method in acute subdural hematoma (ASDH) rat model. With 100 kDa cut-off microdialysis membrane, we could measure several biomarkers such as ubiquitin carboxy hydrolase L1 (UCH-L1), a neuronal marker and glial fibrillary acidic protein (GFAP), and a glial marker in extracellular fluid. In this experiment, we could detect that the peak of extracellular UCH-L1 in the early hypothermia group was significantly lower than in the normothermia group. Also, in the late phase of reperfusion (>2.5 h after decompression), extracellular GFAP in the early hypothermia group was lower than in the normothermia. These data thus suggested that early, preoperatively induced hypothermia could mediate the reduction of neuronal and glial damage in the reperfusion phase of ischemia/reperfusion brain injury.Microdialysis allows for the direct measurement of extracellular molecules in an attempt to characterize metabolic derangements before they become clinically relevant. Advancements in technology have allowed for the bedside assay of multiple markers of ischemia and metabolic dysfunction, and the applications for traumatic brain injury have been well established. As clinicians become more comfortable with these tools their widespread use and potential for clinical impact with continue to rise.


Assuntos
Modelos Animais de Doenças , Hematoma Subdural/diagnóstico , Hematoma Subdural/terapia , Hipotermia Induzida , Microdiálise , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Citocinas/metabolismo , Líquido Extracelular/metabolismo , Hematoma Subdural/etiologia , Hipotermia Induzida/instrumentação , Hipotermia Induzida/métodos , Masculino , Microdiálise/instrumentação , Microdiálise/métodos , Ratos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA