Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(19): e2217887120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126704

RESUMO

Treatment of HIV-1ADA-infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4+ T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.


Assuntos
Infecções por HIV , Soropositividade para HIV , Camundongos , Animais , Humanos , Antirretrovirais/uso terapêutico , Edição de Genes , Provírus/genética , Receptores CCR5
2.
Nat Mater ; 19(8): 910-920, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341511

RESUMO

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.


Assuntos
Antirretrovirais/metabolismo , Nanoestruturas/química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Piridonas/metabolismo , Animais , Antirretrovirais/farmacologia , Antirretrovirais/toxicidade , Transporte Biológico , Preparações de Ação Retardada , Composição de Medicamentos , Interações Medicamentosas , Estabilidade de Medicamentos , Camundongos , Piridonas/farmacologia , Piridonas/toxicidade
3.
JMIR Aging ; 7: e52069, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869932

RESUMO

BACKGROUND: Evidence-based programs (EBPs) for health promotion were developed to reach older adults where they live, work, pray, and play. When the COVID-19 pandemic placed a disproportionate burden on older adults living with chronic conditions and the community-based organizations that support them, these in-person programs shifted to remote delivery. While EBPs have demonstrated effectiveness when delivered in person, less is known about outcomes when delivered remotely. OBJECTIVE: This study evaluated changes in remote EBP participants' health and well-being in a national mixed methods outcome evaluation in January 1, 2021, to March 31, 2022. METHODS: We used the RE-AIM (Reach, Effectiveness, Adoption, Implementation, and Maintenance) for equity framework to guide the evaluation. We purposively sampled for diverse remote EBP delivery modes and delivery organizations, staff, and traditionally underserved older adults, including people of color and rural dwellers. We included 5 EBPs for self-management, falls prevention, and physical activity: videoconferencing (Chronic Disease Self-Management Program, Diabetes Self-Management Program, and EnhanceFitness), telephone plus mailed materials (Chronic Pain Self-Management Program), and enhanced self-directed mailed materials (Walk With Ease). Participant and provider data included validated surveys, in-depth interviews, and open-ended survey questions. We used descriptive statistics to characterize the sample and the magnitude of change and paired t tests (2-tailed) and the Fisher exact test to test for change in outcomes between enrollment and 6-month follow-up. Thematic analysis was used to identify similarities and differences in outcomes within and across programs. Joint display tables facilitated the integration of quantitative and qualitative findings. RESULTS: A total of 586 older adults, 198 providers, and 37 organizations providing EBPs participated in the evaluation. Of the 586 older adults, 289 (49.3%) provided follow-up outcome data. The mean age of the EBP participants was 65.4 (SD 12.0) years. Of the 289 EBP participants, 241 (83.4%) were female, 108 (37.3%) were people of color, 113 (39.1%) lived alone, and 99 (34.3%) were experiencing financial hardship. In addition, the participants reported a mean of 2.5 (SD 1.7) chronic conditions. Overall, the remote EBP participants showed statistically significant improvements in health, energy, sleep quality, loneliness, depressive symptoms, and technology anxiety. Qualitatively, participants shared improvements in knowledge, attitudes, and skills for healthier living; reduced their social isolation and loneliness; and gained better access to programs. Three-fourths of the providers (149/198, 75.2%) felt that effectiveness was maintained when switching from in-person to remote delivery. CONCLUSIONS: The findings suggest that participating in remote EBPs can improve health, social, and technological outcomes of interest for older adults and providers, with benefits extending to policy makers. Future policy and practice can better support remote EBP delivery as one model for health promotion, improving access for all older adults.


Assuntos
COVID-19 , Promoção da Saúde , Humanos , Promoção da Saúde/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Idoso , Feminino , Masculino , Telemedicina , Prática Clínica Baseada em Evidências , Avaliação de Programas e Projetos de Saúde , Pandemias , Avaliação de Resultados em Cuidados de Saúde , Idoso de 80 Anos ou mais , Doença Crônica
4.
J Neuroimmune Pharmacol ; 16(4): 796-805, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528173

RESUMO

Defining the latent human immunodeficiency virus type 1 (HIV-1) burden in the human brain during progressive infection is limited by sample access. Human hematopoietic stem cells (hu-HSCs)-reconstituted humanized mice provide an opportunity for this study. The model mimics, in measure, HIV-1 pathophysiology, transmission, treatment, and elimination in an infected human host. However, to date, brain HIV-1 latency in hu-HSC mice during suppressive antiretroviral therapy (ART) was not studied. To address this need, hu-HSC mice were administered long acting (LA) ART 14 days after HIV-1 infection was established. Animals were maintained under suppressive ART for 3 months, at which time HIV-1 infection was detected at low levels in brain tissue by droplet digital polymerase chain reaction (ddPCR) test on DNA. Notably, adoptive transfer of cells acquired from the hu-HSC mouse brains and placed into naive hu-HSC mice demonstrated viral recovery. These proof-of-concept results demonstrate replication-competent HIV-1 reservoir can be established in hu-HSC mouse brains that persists during long-term ART treatment. Hu-HSC mice-based mouse viral outgrowth assay (hu-MVOA) serves as a sensitive tool to interrogate latent HIV-1 brain reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Transferência Adotiva , Animais , Encéfalo , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , Camundongos , Carga Viral , Latência Viral , Replicação Viral
5.
Artigo em Inglês | MEDLINE | ID: mdl-32117811

RESUMO

Detection of latent human immunodeficiency virus type 1 (HIV-1) in "putative" infectious reservoirs is required for determining treatment efficiency and for viral elimination strategies. Such tests require induction of replication competent provirus and quantitative testing of viral load for validation. Recently, humanized mice were employed in the development of such tests by employing a murine viral outgrowth assay (mVOA). Here blood cells were recovered from virus infected antiretroviral therapy suppressed patients. These cells were adoptively transferred to uninfected humanized mice where replication competent virus was recovered. Prior reports supported the notion that an mVOA assay provides greater sensitivity than cell culture-based quantitative VOA tests for detection of latent virus. In the current study, the mVOA assays was adapted using donor human hematopoietic stem cells-reconstituted mice to affirm research into HIV-1 elimination. We simulated an antiretroviral therapy (ART)-treated virus-infected human by maintaining the infected humanized mice under suppressive treatment. This was operative prior to human cell adoptive transfers. Replication-competent HIV-1 was easily detected in recipient animals from donors with undetectable virus in plasma. Moreover, when the assay was used to investigate viral presence in tissue reservoirs, quantitative endpoints were determined in "putative" viral reservoirs not possible in human sample analyses. We conclude that adoptive transfer of cells between humanized mice is a sensitive and specific assay system for detection of replication competent latent HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/terapia , Humanos , Camundongos , Carga Viral , Latência Viral , Replicação Viral
6.
Front Immunol ; 10: 340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873181

RESUMO

Human immunodeficiency virus type one (HIV-1) tissue compartments are established soon after viral infection. However, the timing in which virus gains a permanent foothold in tissue and the cellular factors that control early viral-immune events are incompletely understood. These are critical events in studies of HIV-1 pathogenesis and in the development of viral reservoirs after antiretroviral therapy. Moreover, factors affecting the permanence of viral-tissue interactions underlie barriers designed to eliminate HIV-1 infection. To this end we investigated the temporal and spatial viral and host factors during HIV-1 seeding of tissue compartments. Two humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse models were employed. In the first, immune deficient mice were reconstituted with human CD34+ cord blood hematopoietic stem cells (HSC) (hu-HSC) and in the second mice were transplanted with adult mature human peripheral lymphocytes (hu-PBL). Both, in measure, reflect relationships between immune activation and viral infection as seen in an infected human host. Following humanization both mice models were infected with HIV-1ADA at 104 50% tissue culture infective doses. Viral nucleic acids and protein and immune cell profiles were assayed in brain, lung, spleen, liver, kidney, lymph nodes, bone marrow, and gut from 3 to 42 days. Peripheral CD4+ T cell loss began at 3 days together with detection of HIV-1 RNA in both mouse models after initiation of HIV-1 infection. HIV-1 was observed in all tested tissues at days 3 and 14 in hu- PBL and HSC mice, respectively. Immune impairment was most prominent in hu-PBL mice. T cell maturation and inflammation factors were linked directly to viral tissue seeding in both mouse models. We conclude that early viral tissue compartmentalization provides a roadmap for investigations into HIV-1 elimination.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Progressão da Doença , HIV-1/genética , Humanos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/imunologia , Carga Viral , Proteínas Virais
7.
J Control Release ; 311-312: 201-211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491432

RESUMO

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Nanopartículas/administração & dosagem , Pró-Fármacos/administração & dosagem , Rilpivirina/administração & dosagem , Animais , Fármacos Anti-HIV/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , HIV-1/efeitos dos fármacos , Humanos , Macaca mulatta , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pró-Fármacos/farmacocinética , Rilpivirina/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA