Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849480

RESUMO

BACKGROUND: Children with congenital heart disease (CHD) demonstrate long-term neurodevelopmental impairments. We investigated contrast-enhanced ultrasound (CEUS) cerebral perfusion in a fetal animal model exposed to sub-physiologic oxygen at equivalent levels observed in human fetuses with CHD. METHODS: Fifteen fetal lambs [hypoxic animals (n = 9) and normoxic controls (n = 6)] maintained in an extrauterine environment underwent periodic brain CEUS. Perfusion parameters including microvascular flow velocity (MFV), transit time, and microvascular blood flow (MBF) were extrapolated from a standardized plane; regions of interest (ROI) included whole brain, central/thalami, and peripheral parenchymal analyses. Daily echocardiographic parameters and middle cerebral artery (MCA) pulsatility indices (PIs) were obtained. RESULTS: Hypoxic lambs demonstrated decreased MFV, increased transit time, and decreased MBF (p = 0.026, p = 0.016, and p < 0.001, respectively) by whole brain analyses. MFV and transit time were relatively preserved in the central/thalami (p = 0.11, p = 0.08, p = 0.012, respectively) with differences in the peripheral parenchyma (all p < 0.001). In general, cardiac variables did not correlate with cerebral CEUS perfusion parameters. Hypoxic animals demonstrated decreased MCA PI compared to controls (0.65 vs. 0.78, respectively; p = 0.027). CONCLUSION: Aberrations in CEUS perfusion parameters suggest that in environments of prolonged hypoxia, there are regional microvascular differences incompletely characterized by MCA interrogation offering insights into fetal conditions which may contribute to patient outcomes. IMPACT: This work utilizes CEUS to study cerebral microvascular perfusion in a unique fetal animal model subjected to chronic hypoxic conditions equal to fetuses with congenital heart disease. CEUS demonstrates altered parameters with regional differences that are incompletely characterized by MCA Doppler values. These findings show that routine MCA Doppler interrogation may be inadequate in assessing microvascular perfusion differences. To our knowledge, this study is the first to utilize CEUS to assess microvascular perfusion in this model. The results offer insight into underlying conditions and physiological changes which may contribute to known neurodevelopmental impairments in those with congenital heart disease.

2.
IEEE Int Ultrason Symp ; 20232023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38264340

RESUMO

Avascular necrosis (AVN) is a major morbidity that can occur after surgical reduction of a hip with developmental dysplasia. Early detection of changes in femoral head perfusion during surgery may help detect a hip at risk for AVN and guide intraoperative management. Contrast-enhanced ultrasound (CEUS) can be employed for visualization of femoral head perfusion. In this study we evaluate a quantitative CEUS technique to assess femoral head perfusion pre- and post-surgical reduction. CEUS images were obtained following a bolus injection of an ultrasound contrast agent, prior to and again following surgical reduction and casting. An image processing technique called delta projection was used to quantify hip perfusion, measuring peak enhancement (PE) and perfusion index (PI). We analyzed CEUS images of the hips of eight patients, including seven females, whose ages ranged from 4 months to 1 year. In five hips, perfusion increased following surgery, with a mean pre-surgery PE of 6.7 ±2.5(± SE) and PI of 10.5 ±6.3; and a post-reduction PE of 13.1±6.1 (p=0.07) and PI of 14.2 ±6.2 (p=0.008). The change in contrast visualization was observed to be greater within the central aspect of the cartilaginous femoral epiphysis. The proposed technique can quantify pre- and post-surgical perfusion changes on CEUS images in patients with developmental dysplasia. This quantitative technique may provide a more objective and accurate assessment of changes in femoral head perfusion that may have the potential to be indicative of the risk of developing AVN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA