Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phys Chem Chem Phys ; 26(3): 2153-2167, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131627

RESUMO

Electroanalytical measurements are routinely used to estimate material properties exhibiting current and voltage signatures. Analysis of such measurements relies on analytical expressions of material properties to describe the experiments. The need for analytical expressions limits the experiments that can be used to measure properties as well as the properties that can be estimated from a given experiment. Such analytical relations are essentially solutions of the physics-based differential equations (with properties as coefficients) describing the material behavior under certain specific conditions. In recent years, a new machine learning-based approach has been gaining popularity wherein the differential equations are numerically solved to interpret the electroanalytical experiments in terms of corresponding material properties. Since the physics-based differential equations are solved, one can additionally estimate underlying fields, e.g., concentration profile, using such an approach. To exemplify the characteristics of such a machine learning assisted interpretation of electroanalytical measurements, we use data from the Hebb-Wagner test on a magnesium spinel intercalation host. As compared to the traditional analytical expression-based interpretation, the emerging approach decreases experimental efforts to characterize relevant material properties as well as provides field information that was previously inaccessible.

2.
Proc Natl Acad Sci U S A ; 117(23): 12550-12557, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513683

RESUMO

Energy storage is an integral part of modern society. A contemporary example is the lithium (Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and the first commercial electric vehicles in 2010. Most recently, Li-ion batteries have expanded into the electricity grid to firm variable renewable generation, increasing the efficiency and effectiveness of transmission and distribution. Important applications continue to emerge including decarbonization of heavy-duty vehicles, rail, maritime shipping, and aviation and the growth of renewable electricity and storage on the grid. This perspective compares energy storage needs and priorities in 2010 with those now and those emerging over the next few decades. The diversity of demands for energy storage requires a diversity of purpose-built batteries designed to meet disparate applications. Advances in the frontier of battery research to achieve transformative performance spanning energy and power density, capacity, charge/discharge times, cost, lifetime, and safety are highlighted, along with strategic research refinements made by the Joint Center for Energy Storage Research (JCESR) and the broader community to accommodate the changing storage needs and priorities. Innovative experimental tools with higher spatial and temporal resolution, in situ and operando characterization, first-principles simulation, high throughput computation, machine learning, and artificial intelligence work collectively to reveal the origins of the electrochemical phenomena that enable new means of energy storage. This knowledge allows a constructionist approach to materials, chemistries, and architectures, where each atom or molecule plays a prescribed role in realizing batteries with unique performance profiles suitable for emergent demands.

3.
J Am Chem Soc ; 144(31): 14121-14131, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895903

RESUMO

Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCr2O4 is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCr2O4, however, reveal significant energetic limitations. Motivated by these disparate observations; herein, we examine long-range ion transport by electrically polarizing dense pellets of MgCr2O4. Our conventional understanding of ion transport in battery cathode materials, e.g., Nernst-Einstein conduction, cannot explain the measured response since it neglects frictional interactions between mobile species and their nonideal free energies. We propose an extended theory that incorporates these interactions and reduces to the Nernst-Einstein conduction under dilute conditions. This theory describes the measured response, and we report the first study of long-range ion transport behavior in MgCr2O4. We conclusively show that the Mg chemical diffusivity is comparable to lithium-ion electrode materials, whereas the total conductivity is rate-limiting. Given these differences, energy storage in MgCr2O4 is limited by particle-scale voltage drops, unlike lithium-ion particles that are limited by concentration gradients. Future materials design efforts should consider the interspecies interactions described in this extended theory, particularly with respect to multivalent-ion systems and their resultant effects on continuum transport properties.

4.
Phys Chem Chem Phys ; 22(4): 2590-2591, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31938792

RESUMO

Correction for 'Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies' by Pallab Barai et al., Phys. Chem. Chem. Phys., 2017, 19, 20493-20505.

5.
Phys Chem Chem Phys ; 19(31): 20493-20505, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28726884

RESUMO

Future lithium-ion batteries must use lithium metal anodes to fulfill the demands of high energy density applications with the potential to enable affordable electric cars with 350-mile range. However, dendrite growth during charging prevents the commercialization of this technology. It has been demonstrated that the presence of a compressive mechanical stress field around a dendritic protrusion prevents growth. Several techniques based on this concept, such as protective layers, externally applied pressure and solid electrolytes have been investigated by other researchers. Because of the low coulombic efficiencies associated with the stiff protective layers and high-pressure conditions, implementation of these techniques in commercial cells is complicated. Polymer-based solid electrolytes demonstrate better efficiency and capacity retention capabilities. However, dendrite growth is still possible in polymer electrolytes at higher current densities. The simulations described in this article provide guidance on the conditions under which dendrite growth is possible in polymer cells and targets for material properties needed for dendrite prevention. Increasing the elastic modulus of the electrolyte prevents the growth of dendritic protrusions in two ways: (i) higher compressive mechanical stress leads to reduced exchange current density at the protrusion peak compared to the valley, and (ii) plastic deformation of lithium metal results in reduction of the height of the dendritic protrusion. A phase map is constructed, showing the range of operation (applied current) and design (electrolyte elastic modulus) parameters that corresponds to stable lithium deposition. It is found that increasing the yield strength of the polymer electrolyte plays a significant role in preventing dendrite growth in lithium metal anodes, providing a new avenue for further exploration.

6.
Nano Lett ; 16(7): 4686-90, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336856

RESUMO

Control over porous electrode microstructure is critical for the continued improvement of electrochemical performance of lithium ion batteries. This paper describes a convenient and economical method for controlling electrode porosity, thereby enhancing material loading and stabilizing the cycling performance. Sacrificial NaCl is added to a Si-based electrode, which demonstrates an areal capacity of ∼4 mAh/cm(2) at a C/10 rate (0.51 mA/cm(2)) and an areal capacity of 3 mAh/cm(2) at a C/3 rate (1.7 mA/cm(2)), one of the highest material loadings reported for a Si-based anode at such a high cycling rate. X-ray microtomography confirmed the improved porous architecture of the SiO electrode with NaCl. The method developed here is expected to be compatible with the state-of-the-art lithium ion battery industrial fabrication processes and therefore holds great promise as a practical technique for boosting the electrochemical performance of lithium ion batteries without changing material systems.

7.
Nano Lett ; 16(9): 5365-72, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27501313

RESUMO

The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

8.
J Synchrotron Radiat ; 22(5): 1170-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26289268

RESUMO

To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick-Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ∼11 below the requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

9.
J Synchrotron Radiat ; 22(3): 503-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931060

RESUMO

The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.


Assuntos
Cristalografia por Raios X/instrumentação , Lasers , Aceleradores de Partículas/instrumentação , Espectrometria por Raios X/instrumentação , Raios X , California , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/instrumentação
10.
J Synchrotron Radiat ; 22(3): 508-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931061

RESUMO

The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4-25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

11.
Bioorg Med Chem Lett ; 24(16): 3807-13, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25037918

RESUMO

Two libraries of modestly reactive ureas containing either electron-deficient acyl anilines or acyl pyrazoles were prepared and are reported as screening libraries for candidate serine hydrolase inhibitors. Within each library is a small but powerful subset of compounds that serve as a chemotype fragment screening library capable of subsequent structural diversification. Elaboration of the pyrazole-based ureas provided remarkably potent irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki=100-200 pM) complementary to those previously disclosed enlisting electron-deficient aniline-based ureas.


Assuntos
Descoberta de Drogas , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
Adv Colloid Interface Sci ; 331: 103205, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875805

RESUMO

Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-ß-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.


Assuntos
Amiloide , Muramidase , Nanoestruturas , Transição de Fase , Muramidase/química , Muramidase/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inibidores , Humanos , Nanoestruturas/química , Animais , Amiloidose/metabolismo , Amiloidose/patologia , Amiloidose/tratamento farmacológico
13.
Adv Mater ; 36(21): e2312027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252915

RESUMO

Calcination is a solid-state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high-performance cathode materials. Here, correlative in situ X-ray absorption/scattering spectroscopy is used to investigate the calcination of nickel-based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data-driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low-temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally-ordered layered phase upon full lithiation but remains small in size. Subsequent high-temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.

14.
Nat Commun ; 15(1): 430, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199989

RESUMO

Lithium-ion batteries play a crucial role in decarbonizing transportation and power grids, but their reliance on high-cost, earth-scarce cobalt in the commonly employed high-energy layered Li(NiMnCo)O2 cathodes raises supply-chain and sustainability concerns. Despite numerous attempts to address this challenge, eliminating Co from Li(NiMnCo)O2 remains elusive, as doing so detrimentally affects its layering and cycling stability. Here, we report on the rational stoichiometry control in synthesizing Li-deficient composite-structured LiNi0.95Mn0.05O2, comprising intergrown layered and rocksalt phases, which outperforms traditional layered counterparts. Through multiscale-correlated experimental characterization and computational modeling on the calcination process, we unveil the role of Li-deficiency in suppressing the rocksalt-to-layered phase transformation and crystal growth, leading to small-sized composites with the desired low anisotropic lattice expansion/contraction during charging and discharging. As a consequence, Li-deficient LiNi0.95Mn0.05O2 delivers 90% first-cycle Coulombic efficiency, 90% capacity retention, and close-to-zero voltage fade for 100 deep cycles, showing its potential as a Co-free cathode for sustainable Li-ion batteries.

15.
Artigo em Inglês | MEDLINE | ID: mdl-23573922

RESUMO

We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 µg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (µg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.


Assuntos
Arsênio/química , Eletrocoagulação/métodos , Água Subterrânea/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Bangladesh , Camboja , Eletrocoagulação/economia , Espectrofotometria Atômica , Purificação da Água/economia
16.
JACS Au ; 3(2): 306-315, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873702

RESUMO

The rate at which rechargeable batteries can be charged and discharged is governed by the selective transport of the working ions through the electrolyte. Conductivity, the parameter commonly used to characterize ion transport in electrolytes, reflects the mobility of both cations and anions. The transference number, a parameter introduced over a century ago, sheds light on the relative rates of cation and anion transport. This parameter is, not surprisingly, affected by cation-cation, anion-anion, and cation-anion correlations. In addition, it is affected by correlations between the ions and neutral solvent molecules. Computer simulations have the potential to provide insights into the nature of these correlations. We review the dominant theoretical approaches used to predict the transference number from simulations by using a model univalent lithium electrolyte. In electrolytes of low concentration, one can obtain a quantitative model by assuming that the solution is made up of discrete ion-containing clusters-neutral ion pairs, negatively and positively charged triplets, neutral quadruplets, and so on. These clusters can be identified in simulations using simple algorithms, provided their lifetimes are sufficiently long. In concentrated electrolytes, more clusters are short-lived and more rigorous approaches that account for all correlations are necessary to quantify transference. Elucidating the molecular origin of the transference number in this limit remains an unmet challenge.

17.
ACS Appl Mater Interfaces ; 15(13): 17344-17352, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951807

RESUMO

The lithium metal-solid-state electrolyte interface plays a critical role in the performance of solid-state batteries. However, operando characterization of the buried interface morphology in solid-state cells is particularly difficult because of the lack of direct optical access. Destructive techniques that require isolating the interface inadvertently modify the interface and cannot be used for operando monitoring. In this work, we introduce the concept of thermal wave sensing using modified 3ω sensors that are attached to the outside of the lithium metal-solid-state cells to noninvasively probe the morphology of the lithium metal-electrolyte interface. We show that the thermal interface resistance measured by the 3ω sensors relates directly to the physical morphology of the interface and demonstrates that 3ω thermal wave sensing can be used for noninvasive operando monitoring the morphology evolution of the lithium metal-solid-state electrolyte interface.

18.
ACS Appl Mater Interfaces ; 15(21): 26047-26059, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204772

RESUMO

Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li7La3Zr2O12 (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.

19.
Patterns (N Y) ; 3(12): 100654, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36569544

RESUMO

Santos et al. (2022) propose a machine learning-based approach to identify various lithiated phases across lengthscales in X-ray images of battery particles, thus enabling automatic interpretation of such information in much bigger datasets and creating opportunities to unravel previously inaccessible scientific understanding.

20.
Science ; 378(6624): eabq3750, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480630

RESUMO

Electrolytes and the associated interphases constitute the critical components to support the emerging battery chemistries that promise tantalizing energy but involve drastic phase and structure complications. Designing better electrolytes and interphases holds the key to the success of these batteries. As the only component that interfaces with every other component in the device, an electrolyte must satisfy multiple criteria simultaneously. These include transporting ions while insulating electrons between the electrodes and maintaining stability against electrodes of extreme chemical natures: the strongly oxidative cathode and the strongly reductive anode. In most advanced batteries, the two electrodes operate at potentials far beyond the thermodynamic stability limits of electrolytes, so the stability therein has to be realized kinetically through an interphase formed from the sacrificial reactions between electrolyte and electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA