Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Opt Lett ; 49(5): 1301-1304, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426998

RESUMO

Bound state in the continuum (BIC) is a phenomenon that describes the perfect confinement of electromagnetic waves despite their resonant frequencies lying in the continuous radiative spectrum. BICs can be realized by introducing a destructive interference between distinct modes, referred to as Friedrich-Wintgen BICs (FW-BICs). Herein, we demonstrate that FW-BICs can be derived from coupled modes of individual split-ring resonators (SRR) in the terahertz band. The eigenmode results manifest that FW-BICs are in the center of the far-field polarization vortices. Quasi-BIC-I keeps an ultrahigh quality factor (Q factor) in a broad momentum range along the Γ-X direction, while the Q factor of the quasi-BIC-II drops rapidly. Our results can facilitate the design of devices with high-Q factors with extreme robustness against the incident angle.

2.
Nature ; 562(7728): 557-562, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356185

RESUMO

Polaritons-hybrid light-matter excitations-enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces1,2 (vdW materials). These polaritons can be tuned by electric fields3,4 or by material thickness5, leading to applications including nanolasers6, tunable infrared and terahertz detectors7, and molecular sensors8. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties9. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus9), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO3, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO3 flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons3-5. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature10. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride11 and for graphene plasmon polaritons at low temperatures12. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light-matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.

3.
Opt Lett ; 48(6): 1343-1346, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946923

RESUMO

Photonic edge mode confining light in cavities of surface plasmons is beneficial in image and biosensor applications. In the terahertz band, however, the edge mode in a cavity of spoof localized surface plasmons has not matured sufficiently. Herein, a cost-effective strategy to achieve a terahertz photonic edge mode using a metasurface of strongly coupled fourfold spoof localized surface plasmons in a tetramer layout is demonstrated. The quality factors of edge modes decrease when the tetramer shrinks, as revealed by the terahertz dielectric functions. The edge modes that emerge can be categorized as inner and outer edge modes, as deduced from the simulated electric field distribution. Our results show that the edge modes are due to the interaction of spoof localized surface plasmons in the terahertz band.

4.
Opt Lett ; 48(17): 4685-4688, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656586

RESUMO

Resonant cavities are fundamental to and versatile for terahertz integrated systems. So far, integrated resonant cavities have been implemented in relatively lossy terahertz platforms. In this Letter, we propose a series of integrated disk resonators built into a low-loss substrateless silicon waveguide platform, where the resonances and associated quality factor (Q-factor) can be controlled via an effective medium. The measurement results demonstrate that the Q-factor can reach up to 9146 at 274.4 GHz due to the low dissipation of the platform. Additionally, these resonators show strong tunability of the resonance under moderate optical power. These terahertz integrated disk resonators can be employed in sensing and communications.

5.
Opt Lett ; 48(8): 2202-2205, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058677

RESUMO

A uniform illumination over a screen is crucial for terahertz imaging. As such, conversion from a Gaussian beam to a flattop beam becomes necessary. Most of the current beam conversion techniques rely on bulky multi-lens systems for collimated input and operate in the far-field. We present a single metasurface lens to efficiently convert a quasi-Gaussian beam from the near-field region of a WR-3.4 horn antenna to a flattop beam. The design process is divided into three sections to minimize simulation time, and the conventional Gerchberg-Saxton (GS) algorithm is supplemented with the Kirchhoff-Fresnel diffraction equation. Experimental validation confirms that a flattop beam with an efficiency of 80% has been achieved at 275 GHz. Such high-efficiency conversion is desirable for practical terahertz systems and the design approach can be generally used for beam shaping in the near-field.

6.
J Biomed Sci ; 30(1): 65, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559138

RESUMO

Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.


Assuntos
DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Prognóstico
7.
Small ; 18(47): e2203234, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36094789

RESUMO

Air-channel devices have a special advantage due to the promise of vacuum-like ballistic transport in air, radiation insensitivity, and nanoscale size. Here, achieving high current at low voltage along with considerable mechanical stability is a primary issue. The comparative analysis of four planar and metallic electrode-pair geometries at 10 nm channel length is presented. The impact of nano-electrode-pair geometries on overall device performance is investigated. Air-channel devices are operated at the ultra-low voltage of 5 mV to demonstrate the device dynamics of air-channel devices at low power. Investigations focus on the direct tunneling (DT) mechanism which is dominant in the low-voltage regime. Comparative analysis of different electrode-pair geometries reveals two orders of magnitude increment in the current just by modulating the electrode-pair structure. Theoretical analysis suggests that the emission current is directly related to the active junction area within the metal-air-metal interface at the direct tunneling regime. The geometry-dependent mechanical stability of different electrode pairs is compared by imaging biasing triggered nanoscale structural changes and pulsed biasing stress analysis. The results and claims are confirmed and consolidated with the statistical analysis. Experimental investigations provide strong directions for high-performance and stable devices. In-depth theoretical discussions will enable the accurate modeling of emerging low-power, high-speed, radiation-hardened nanoscale vacuum electronics.


Assuntos
Eletrônica , Transistores Eletrônicos , Metais/química
8.
Opt Express ; 30(13): 23631-23639, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225039

RESUMO

Conventionally, a symmetry-protected quasi bound state of the continuum (BIC) becomes achievable by breaking the C2 symmetry of meta-atoms. Our work exhibits a novel approach to achieving dual band quasi-BIC by breaking the C2v symmetry into Cs symmetry. Also, we show that a single band quasi-BIC can be achieved by breaking the C2v symmetry into C2 symmetry. Our metasurface of C2v symmetry is composed of double gaps split ring resonator (DSRR), and it degrades to C2 symmetry when the double gaps are displaced in opposite directions. One band quasi-BIC can be observed occurring at around 0.36 and 0.61 THz respectively with the metasurface excited by x- and y-polarized terahertz radiation, respectively. A couple of dark dipole oscillator dominates the quasi-BIC at 0.36 THz, while a quadruple-like oscillator dominates the quasi-BIC at 0.61 THz. The damping ratio and coupling coefficients of the above single quasi-BIC are close to the orthogonal polarization of the incident terahertz wave. However, the metasurface of the DSRR array degrades down to Cs symmetry when the double gaps are displaced in the same directions. A dual band quasi-BIC (0.23 THz and 0.62 THz) is found to be sensitive to the y-polarized terahertz radiation. It is found that the inductive-capacitive (LC) resonance results in quasi-BIC at 0.23 THz, while a quadrupole-like oscillation results in quasi-BIC at 0.62 THz. The quasi-BIC at 0.62 THz has a higher coupling coefficient and lower damping ratio than quasi-BIC at 0.23 THz in a metasurface of Cs symmetry. The realization of the above locally symmetric breaking on the quasi-BIC of terahertz metasurfaces is helpful for the innovation of multi-band terahertz biosensors.

9.
Small ; 17(7): e2005582, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502115

RESUMO

The biomarker detection in human body fluids is crucial as biomarkers are important in diagnosing diseases. Conventional invasive techniques for biomarker detection are associated with infection, tissue damage, and discomfort. Non-invasive devices are an attractive alternative. Here, metal oxide (oxygen-deficient zinc oxide, ZnO) based conductometric sensors with two-terminal electrodes for rapid detection of biomarkers in real-time, are presented. This platform can be engineered for non-invasive, sensitive, and on-demand selective detection of biomarkers based on surface functionalization. The three novelties in this biosensing technique include an on-demand target selection device platform, short (<10 min) incubation times, and real-time monitoring of the biomarker of interest by electrical (resistance change) measurements. Cardiac inflammatory biomarkers interleukin 6 (IL-6) and C-reactive protein (CRP) are used as the model antigens. The devices can detect 100× lower concentration of IL-6 than healthy levels in human saliva and sweat and 1000× and ≈50× lower CRP concentrations than healthy levels in human saliva and sweat, respectively. The devices show high selectivity for IL-6 and CRP antigens when tested with a mixture of biomarkers. This sensor platform can be extended to selective measurements for viruses or DNA screening, which enables a new category of compact and rapid point-of-care medical devices.


Assuntos
Técnicas Biossensoriais , Condutometria , Biomarcadores , Eletrodos , Humanos , Suor
10.
Small ; 17(32): e2100621, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34105241

RESUMO

Limited levels of UV exposure can be beneficial to the human body. However, the UV radiation present in the atmosphere can be damaging if levels of exposure exceed safe limits which depend on the individual the skin color. Hence, UV photochromic materials that respond to UV light by changing their color are powerful tools to sense radiation safety limits. Photochromic materials comprise either organic materials, inorganic transition metal oxides, or a hybrid combination of both. The photochromic behavior largely relies on charge transfer mechanisms and electronic band structures. These factors can be influenced by the structure and morphology, fabrication, composition, hybridization, and preparation of the photochromic materials, among others. Significant challenges are involved in realizing rapid photochromic change, which is repeatable, reversible with low fatigue, and behaving according to the desired application requirements. These challenges also relate to finding the right synergy between the photochromic materials used, the environment it is being used for, and the objectives that need to be achieved. In this review, the principles and applications of photochromic processes for transition metal oxides and hybrid materials, photocatalytic applications, and the outlook in the context of commercialized sensors in this field are presented.


Assuntos
Elementos de Transição , Raios Ultravioleta , Humanos , Óxidos
11.
Opt Lett ; 46(18): 4640, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525069

RESUMO

This publisher's note contains corrections to Opt. Lett.46, 4164 (2021)OPLEDP0146-959210.1364/OL.431285.

12.
Opt Lett ; 46(17): 4164-4167, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469965

RESUMO

Polarization conversion is useful for studies of chiral structures in biology and chemistry, and for polarization diversity in communications. It is conventionally realized with wave plates, which, however, present challenges due to limited material availability, as well as narrow bandwidth and low efficiency at terahertz frequencies. To enhance bandwidth and efficiency, the concept of the Huygens' metasurface is adopted here for a transmissive half-wave plate. The half-wave metasurface is designed following the optimal frequency-independent circuit parameters provided by a broadband semi-analytical approach. Simulation results of an optimal design suggest that a 15-dB extinction ratio can be sustained from 219 GHz to 334 GHz, corresponding to a fractional bandwidth of 41.6%. The measured results indicate that the fabricated structure enables a 15-dB extinction ratio from 220 GHz to 303 GHz, with a cross-polarization transmission efficiency above 76.7% for both linear and circular polarizations. This half-wave metasurface design can be readily integrated into compact terahertz systems for diverse applications.

13.
Opt Express ; 28(10): 15573-15586, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403582

RESUMO

Metamaterials have been engineered to achieve electromagnetically induced transparency (EIT)-like behavior, analogous to those in quantum optical systems. These meta-devices are opening new paradigms in terahertz communication, ultra-sensitive sensing and EIT-like anti-reflection. The controlled coupling between a sub-radiant and a super-radiant particle in the unit cells of these metamaterial can enable multiple narrow plasmon induced transparency (PIT) windows over a broad band, with considerable group delay of electromagnetic field (slow light effect). Phase coherence between these PIT windows is highly desired for next-generation multichannel communication network. Herein, we numerically and experimentally validate a controllable frequency hopping mechanism between "slow light" windows in the terahertz (THz) regime. The effective media are composed of plasmonic "molecules" in which an asymmetric split-ring resonator (ASRR) or Fano resonator is displaced on the side of a cut-wire (Lorentz oscillator). Two metasurfaces where ASRR is on opposite side of the cut-wire are investigated. In these two cases, the proximity of the cut-wire to the gap on the ASRR having asymmetry is different. On one side, when the gap is nearer to the cut wire, displacing the ASRR along the cut-wire, produces only one narrow transparency window at 0.8 THz, corresponding to 20 ps group delay. When the ASRR is positioned on the opposite side, such that the gap is further, two transparency windows are observed when the ASRR is displaced along the cut-wire. That is, the transparency window hops from 0.8 THz to 1.2 THz. This corresponds to an increase from 20 to 30 ps in slow light effect. Numerical simulations suggest these single or multiple PIT windows occur if the couplings between the plasmonic modes in the different arrangements are either in-phase or out-of-phase, respectively.

14.
Opt Lett ; 45(5): 1196-1199, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108804

RESUMO

Far-infrared absorbers exhibiting wideband performance are in great demand in numerous applications, including imaging, detection, and wireless communications. Here, a nonresonant far-infrared absorber with ultra-wideband operation is proposed. This absorber is in the form of inverted pyramidal cavities etched into moderately doped silicon. By means of a wet-etching technique, the crystallinity of silicon restricts the formation of the cavities to a particular shape in an angle that favors impedance matching between lossy silicon and free space. Far-infrared waves incident on this absorber experience multiple reflections on the slanted lossy silicon side walls, being dissipated towards the cavity bottom. The simulation and measurement results confirm that an absorption beyond 90% can be sustained from 1.25 to 5.00 THz. Furthermore, the experiment results suggest that the absorber can operate up to at least 21.00 THz with a specular reflection less than 10% and negligible transmission.

15.
Small ; 15(22): e1900966, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31018039

RESUMO

The translation of biological synapses onto a hardware platform is an important step toward the realization of brain-inspired electronics. However, to mimic biological synapses, devices till-date continue to rely on the need for simultaneously altering the polarity of an applied electric field or the output of these devices is photonic instead of an electrical synapse. As the next big step toward practical realization of optogenetics inspired circuits that exhibit fidelity and flexibility of biological synapses, optically-stimulated synaptic devices without a need to apply polarity-altering electric field are needed. Utilizing a unique photoresponse in black phosphorus (BP), here reported is an all-optical pathway to emulate excitatory and inhibitory action potentials by exploiting oxidation-related defects. These optical synapses are capable of imitating key neural functions such as psychological learning and forgetting, spatiotemporally correlated dynamic logic and Hebbian spike-time dependent plasticity. These functionalities are also demonstrated on a flexible platform suitable for wearable electronics. Such low-power consuming devices are highly attractive for deployment in neuromorphic architectures. The manifestation of cognition and spatiotemporal processing solely through optical stimuli provides an incredibly simple and powerful platform to emulate sophisticated neural functionalities such as associative sensory data processing and decision making.


Assuntos
Fósforo/química , Sinapses/metabolismo , Luz , Microscopia Eletrônica de Transmissão , Plasticidade Neuronal/efeitos da radiação , Espectroscopia Fotoeletrônica , Sinapses/química
16.
Opt Express ; 27(19): 26459-26470, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674527

RESUMO

Herein, we demonstrate one of the highest terahertz group delay of 42.4 ps achieved experimentally at 0.23 THz, on a flexible planar metamaterial. The unit cell of metasurface is made up of a textured closed cavity and another experimentally concentric metallic arc. By tuning the central angle of the metallic arc, its intrinsic dipolar mode is in destructive interference with the spoof localized surface plasmon (SLSP) on textured closed cavity, which results in a plasmon-induced transparency phenomenon. The measured transmittances of as-fabricated samples using terahertz-time domain spectroscopy validate numerical results using extended coupled Lorentz oscillator model. It is found that the coupling coefficient and damping ratio of SLSP relies on the radius of the ring structure of textured closed cavity. As a consequence, the slow light maximum values become manoeuverable in strength at certain frequencies of induced transparency windows. To the best of our knowledge, our experimental result is currently the highest value demonstrated so far within metasurface at terahertz band.

17.
Electrophoresis ; 40(20): 2728-2735, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219180

RESUMO

This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA-MB-231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA-MB-231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA-MB-231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/fisiologia , Forma Celular/fisiologia , Eletroforese/instrumentação , Linhagem Celular Tumoral , Eletroforese/métodos , Feminino , Humanos , Microeletrodos
18.
Nano Lett ; 18(12): 7478-7484, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30441900

RESUMO

Scattering-free transport in vacuum tubes has always been superior to solid-state transistors. It is the advanced fabrication with mass production capability at low cost which drove solid-state nanoelectronics. Here, we combine the best of vacuum tubes with advanced nanofabrication technology. We present nanoscale, metal-based, field emission air channel transistors. Comparative analysis of tungsten-, gold-, and platinum-based devices is presented. Devices are fabricated with electron beam lithography, achieving channel lengths less than 35 nm. With this small channel length, vacuum-like carrier transport is possible in air under room temperature and pressure. Source and drain electrodes have planar, symmetric, and sharp geometry. Because of this, devices operate in bidirection with voltages <2 V and current values in few tens of nanoamperes range. The experimental data shows that influential operation mechanism is Fowler-Nordheim tunnelling in tungsten and gold devices, while Schottky emission in platinum device. The presented work enables a technology where metal-based switchable nanoelectronics can be created on any dielectric surface with low energy requirements.

19.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340481

RESUMO

We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aß) in a microfluidic environment. The Aß was separated from the cells and characterized using the gradual dissolution of Aß as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aß under specific dielectrophoretic parameters. Further, Aß in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aß fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aß to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aß-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.


Assuntos
Peptídeos beta-Amiloides/isolamento & purificação , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Saccharomyces cerevisiae/química , Eletrodos , Eletroforese/instrumentação , Liofilização , Ligação de Hidrogênio , Cinética , Saccharomyces cerevisiae/citologia , Solubilidade , Temperatura
20.
Opt Express ; 26(11): 14392-14406, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877478

RESUMO

Polarization conversion of terahertz waves is important for applications in imaging and communications. Conventional wave plates used for polarization conversion are inherently bulky and operate at discrete wavelengths. As a substitute, we employ reflective metasurfaces composed of subwavelength resonators to obtain similar functionality but with enhanced performance. More specifically, we demonstrate low-order dielectric resonators in place of commonly used planar metallic resonators to achieve high radiation efficiencies. As a demonstration of the concept, we present firstly, a quarter-wave mirror that converts 45° incident linearly polarized waves into circularly polarized waves. Next, we present a half-wave mirror that preserves the handedness of circularly polarized waves upon reflection, and in addition, rotates linearly polarized waves by 90° upon reflection. Both metasurfaces operate with high efficiency over a measurable relative bandwidth of 49% for the quarter-wave mirror and 53% for the half-wave mirror. This broadband and high efficiency capabilities of our metasurfaces will allow to leverage maximum benefits from a vast terahertz bandwidth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA