Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(7): e2208509120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745791

RESUMO

Antigenic peptides derived from introns are presented on major histocompatibility (MHC) class I molecules, but how these peptides are produced is poorly understood. Here, we show that an MHC class I epitope (SL8) sequence inserted in the second intron of the ß-globin gene in a C57BL/6 mouse (HBB) generates immune tolerance. Introduction of SL8-specific CD8+ T cells derived from OT-1 transgenic mice resulted in a threefold increase in OT-1 T cell proliferation in HBB animals, as compared to wild-type animals. The growth of MCA sarcoma cells expressing the intron-derived SL8 epitope was suppressed in wild-type animals compared to HBB mice. The ß-globin pre-mRNA was detected in the light polysomal fraction, and introducing stop codons identified a non-AUG initiation site between +228 and +255 nts upstream of the SL8. Isolation of ribosome footprints confirmed translation initiation within this 27 nt sequence. Furthermore, treatment with splicing inhibitor shifts the translation of the pre-mRNA to monosomal fractions and results in an increase of intron-derived peptide substrate as shown by polysome profiling and cell imaging. These results show that non-AUG-initiated translation of pre-mRNAs generates peptides for MHC class I immune tolerance and helps explain why alternative tissue-specific splicing is tolerated by the immune system.


Assuntos
Antígenos de Histocompatibilidade Classe I , Precursores de RNA , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Precursores de RNA/genética , Linfócitos T CD8-Positivos , Biossíntese de Proteínas , Apresentação de Antígeno , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Tolerância Imunológica/genética , Epitopos , Antígenos de Histocompatibilidade Classe II/genética
2.
Cell Immunol ; 374: 104484, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247713

RESUMO

The accumulation of protein aggregates is toxic and linked to different diseases such as neurodegenerative disorders, but the role of the immune system to target and destroy aggregate-carrying cells is still relatively unknown. Here we show a substrate-specific presentation of antigenic peptides to the direct MHC class I pathway via autophagy. We observed no difference in presentation of peptides derived from the viral EBNA1 protein following suppression of autophagy by knocking down Atg5 and Atg12. However, the same knock down treatment suppressed the presentation from ovalbumin. Fusing the aggregate-prone poly-glutamine (PolyQ) to the ovalbumin had no effect on antigen presentation via autophagy. Interestingly, fusing the EBNA1-derived gly-ala repeat (GAr) sequence to ovalbumin rendered the presentation Atg5/12 independent. We also demonstrate that the relative levels of protein expression did not affect autophagy-mediated antigen presentation. These data suggest a substrate-dependent presentation of antigenic peptides for the MHC class I pathway via autophagy and indicate that the GAr of the EBNA1 illustrates a novel virus-mediated mechanism for immune evasion of autophagy-dependent antigen presentation.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Antígenos , Autofagia , Antígenos de Histocompatibilidade Classe II/metabolismo , Evasão da Resposta Imune , Ovalbumina
3.
Polim Med ; 43(3): 129-34, 2013.
Artigo em Polonês | MEDLINE | ID: mdl-24377177

RESUMO

BACKGROUND: Researches have been synthesizing nanocomposites with antibacterial properties for a dozen of years. A lot of study have confirmed a high antibacterial activity of silver nanoparticles and oxygraphene. Silica, titanium dioxide and hydroxyapatites of 1-100 nm are used as carrier for these composites. OBJECTIVES: To synthesise graphene-silver nanocomposites and to determine their antibacterial properties. MATERIALS AND METHODS: The following bacteria strains from the American Type Culture Collection were tested: Staphylococcus aureus ATCC 6538 (Gram-positive bacteria), Escherichia coli ATCC 11229 (Gram-negative bacteria), Klebsiella pneumoniae ATCC 4352 (Gram-negative bacteria). Clinical isolates of bacteria strains (from wounds) were also tested (from species of Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae). The antibacterial effect of nanocomposites was determined by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values according to the reference methods of Clinical and Laboratory Standards Institute (CLSI) for the determination of MICs of aerobic bacteria by broth microdilution. The samples have physical and chemical characteristics. RESULTS: The results showed bacteriostatic (0.4-1.6 microg/ml) and bactericidal (0.4-3.2 microg/ml) efficacy of composities. CONCLUSION: The synthesized nanocomposites of graphene-oxide can be used in biology and medicine as bacteriostatic and bactericidal factor and may be used as an alternative to antibiotics and chemioterapeutics.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Grafite/farmacologia , Nanocompostos/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/química , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas , Prata/química , Staphylococcus aureus/efeitos dos fármacos
4.
Mol Immunol ; 141: 305-308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920325

RESUMO

The field of mRNA translation has witnessed an impressive expansion in the last decade. The once standard model of translation initiation has undergone, and is still undergoing, a major overhaul, partly due to more recent technical advancements detailing, for example, initiation at non-AUG codons. However, some of the pioneering works in this area have come from immunology and more precisely from the field of antigen presentation to the major histocompatibility class I (MHC-I) pathway. Despite early innovative studies from the lab of Nilabh Shastri demonstrating alternative mRNA translation initiation as a source for MHC-I peptide substrates, the mRNA translation field did not include these into their models. It was not until the introduction of the ribo-sequence technique that the extent of non-canonical translation initiation became widely acknowledged. The detection of peptides on MHC-I molecules by CD8 + T cells is extremely sensitive, making this a superior model system for studying alternative mRNA translation initiation from specific mRNAs. In view of this, we give a brief history on alternative initiation from an immunology perspective and its fundamental role in allowing the immune system to distinguish self from non-self and at the same time pay tribute to the works of Nilabh Shastri.


Assuntos
Apresentação de Antígeno/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Peptídeos/genética , Peptídeos/imunologia , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/imunologia
5.
Open Biol ; 11(3): 200348, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784856

RESUMO

Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.


Assuntos
Evasão da Resposta Imune , Neoplasias/imunologia , Viroses/imunologia , Animais , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA