Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Brain ; 147(7): 2428-2439, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38842726

RESUMO

Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aß-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.


Assuntos
Córtex Cerebral , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva , Tauopatias , Proteínas tau , Humanos , Masculino , Feminino , Tomografia por Emissão de Pósitrons/métodos , Idoso , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/fisiopatologia , Imageamento por Ressonância Magnética/métodos
2.
Alzheimers Dement ; 20(10): 6896-6909, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39263969

RESUMO

INTRODUCTION: Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs. METHODS: We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19). RESULTS: Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD. DISCUSSION: The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials. HIGHLIGHTS: Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies. A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies. Hypoperfusion serves as an additional neuronal injury biomarker in AD.


Assuntos
Doença de Alzheimer , Biomarcadores , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Feminino , Masculino , Idoso , Estudos Transversais , Pessoa de Meia-Idade , Tauopatias/líquido cefalorraquidiano , Tauopatias/diagnóstico por imagem
3.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L114-L122, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410026

RESUMO

Neonatal chronic lung disease lacks standardized assessment of lung structural changes. We addressed this clinical need by the development of a novel scoring system [UNSEAL BPD (UNiforme Scoring of the disEAsed Lung in BPD)] using T2-weighted single-shot fast-spin-echo sequences from 3 T MRI in very premature infants with and without bronchopulmonary dysplasia (BPD). Quantification of interstitial and airway remodeling, emphysematous changes, and ventilation inhomogeneity was achieved by consensus scoring on a five-point Likert scale. We successfully identified moderate and severe disease by logistic regression [area under the curve (AUC), 0.89] complemented by classification tree analysis revealing gestational age-specific structural changes. We demonstrated substantial interreader reproducibility (weighted Cohen's κ 0.69) and disease specificity (AUC = 0.91). Our novel MRI score enables the standardized assessment of disease-characteristic structural changes in the preterm lung exhibiting significant potential as a quantifiable endpoint in early intervention clinical trials and long-term disease monitoring.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Displasia Broncopulmonar/diagnóstico por imagem , Displasia Broncopulmonar/patologia , Reprodutibilidade dos Testes , Pulmão/diagnóstico por imagem , Pulmão/patologia , Idade Gestacional , Imageamento por Ressonância Magnética
4.
Eur J Nucl Med Mol Imaging ; 50(3): 859-869, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36329288

RESUMO

PURPOSE: Glioma patients, especially recurrent glioma, suffer from a poor prognosis. While advances to classify glioma on a molecular level improved prognostication at initial diagnosis, markers to prognosticate survival in the recurrent situation are still needed. As 18 kDa translocator protein (TSPO) was previously reported to be associated with aggressive histopathological glioma features, we correlated the TSPO positron emission tomography (PET) signal using [18F]GE180 in a large cohort of recurrent glioma patients with their clinical outcome. METHODS: In patients with [18F]GE180 PET at glioma recurrence, [18F]GE180 PET parameters (e.g., SUVmax) as well as other imaging features (e.g., MRI volume, [18F]FET PET parameters when available) were evaluated together with patient characteristics (age, sex, Karnofsky-Performance score) and neuropathological features (e.g. WHO 2021 grade, IDH-mutation status). Uni- and multivariate Cox regression and Kaplan-Meier survival analyses were performed to identify prognostic factors for post-recurrence survival (PRS) and time to treatment failure (TTF). RESULTS: Eighty-eight consecutive patients were evaluated. TSPO tracer uptake correlated with tumor grade at recurrence (p < 0.05), with no significant differences in IDH-wild-type versus IDH-mutant tumors. Within the subgroup of IDH-mutant glioma (n = 46), patients with low SUVmax (median split, ≤ 1.60) had a significantly longer PRS (median 41.6 vs. 25.3 months, p = 0.031) and TTF (32.2 vs 8.7 months, p = 0.001). Also among IDH-wild-type glioblastoma (n = 42), patients with low SUVmax (≤ 1.89) had a significantly longer PRS (median not reached vs 8.2 months, p = 0.002). SUVmax remained an independent prognostic factor for PRS in the multivariate analysis including CNS WHO 2021 grade, IDH status, and age. Tumor volume defined by [18F]FET PET or contrast-enhanced MRI correlated weakly with TSPO tracer uptake. Treatment regimen did not differ among the median split subgroups. CONCLUSION: Our data suggest that TSPO PET using [18F]GE180 can help to prognosticate recurrent glioma patients even among homogeneous molecular subgroups and may therefore serve as valuable non-invasive biomarker for individualized patient management.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Recidiva Local de Neoplasia/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Tomografia por Emissão de Pósitrons/métodos , Tirosina , Receptores de GABA/genética , Receptores de GABA/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102964

RESUMO

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Paralisia Supranuclear Progressiva , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Atividades Cotidianas , Doença de Alzheimer/complicações , Degeneração Corticobasal/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem
6.
Mov Disord ; 38(10): 1901-1913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37655363

RESUMO

BACKGROUND: To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico
7.
Mov Disord ; 38(10): 1891-1900, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545102

RESUMO

BACKGROUND: Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS). OBJECTIVES: To compare different visual reading strategies and automatic classification of T1-weighted MRI for detection of PSP in a typical clinical cohort including PSP-RS and (non-RS) variant PSP (vPSP) patients. METHODS: Forty-one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning-glory, Mickey-Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre-trained support vector machine (SVM) on the results of atlas-based volumetry. RESULTS: All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%). CONCLUSIONS: Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo , Paralisia Supranuclear Progressiva , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Mesencéfalo/patologia , Paralisia Supranuclear Progressiva/patologia
8.
Eur Arch Psychiatry Clin Neurosci ; 272(6): 957-969, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34935072

RESUMO

BACKGROUND: Significant evidence links white matter (WM) microstructural abnormalities to cognitive impairment in schizophrenia (SZ), but the relationship of these abnormalities with functional outcome remains unclear. METHODS: In two independent cohorts (C1, C2), patients with SZ were divided into two subgroups: patients with higher cognitive performance (SZ-HCP-C1, n = 25; SZ-HCP-C2, n = 24) and patients with lower cognitive performance (SZ-LCP-C1, n = 25; SZ-LCP-C2, n = 24). Healthy controls (HC) were included in both cohorts (HC-C1, n = 52; HC-C2, n = 27). We compared fractional anisotropy (FA) of the whole-brain WM skeleton between the three groups (SZ-LCP, SZ-HCP, HC) by a whole-brain exploratory approach and an atlas-defined WM regions-of-interest approach via tract-based spatial statistics. In addition, we explored whether FA values were associated with Global Assessment of Functioning (GAF) scores in the SZ groups. RESULTS: In both cohorts, mean FA values of whole-brain WM skeleton were significantly lower in the SCZ-LCP group than in the SCZ-HCP group. Whereas in C1 the FA of the frontal part of the left inferior fronto-occipital fasciculus (IFOF) was positively correlated with GAF score, in C2 the FA of the temporal part of the left IFOF was positively correlated with GAF score. CONCLUSIONS: We provide robust evidence for WM microstructural abnormalities in SZ. These abnormalities are more prominent in patients with low cognitive performance and are associated with the level of functioning.


Assuntos
Esquizofrenia , Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Cognição , Imagem de Tensor de Difusão , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
9.
Neuroimage ; 227: 117680, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359345

RESUMO

Whether antagonistic brain states constitute a fundamental principle of human brain organization has been debated over the past decade. Some argue that intrinsically anti-correlated brain networks in resting-state functional connectivity are an artifact of preprocessing. Others argue that anti-correlations are biologically meaningful predictors of how the brain will respond to different stimuli. Here, we investigated the co-activation patterns across the whole brain in various tasks and test whether brain regions demonstrate anti-correlated activity similar to those observed at rest. We examined brain activity in 47 task contrasts from the Human Connectome Project (N = 680) and found robust antagonistic interactions between networks. Regions of the default network exhibited the highest degree of cortex-wide negative connectivity. The negative co-activation patterns across tasks showed good correspondence to that derived from resting-state data processed with global signal regression (GSR). Interestingly, GSR-processed resting-state data was a significantly better predictor of task-induced modulation than data processed without GSR. Finally, in a cohort of 25 patients with depression, we found that task-based anti-correlations between the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex were associated with clinical efficacy of transcranial magnetic stimulation therapy targeting the DLPFC. Overall, our findings indicate that anti-correlations are a biologically meaningful phenomenon and may reflect an important principle of functional brain organization.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Adulto , Idoso , Conectoma/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Estimulação Magnética Transcraniana/métodos
10.
Mov Disord ; 36(4): 883-894, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245166

RESUMO

BACKGROUND: Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. OBJECTIVES: The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. METHODS: Specific binding of the 18 kDa translocator protein tracer 18 F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. RESULTS: Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. CONCLUSIONS: Our data indicate that 18 F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Idoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos Transversais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/genética , Tauopatias/diagnóstico por imagem , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismo
11.
J Magn Reson Imaging ; 54(6): 1763-1772, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34075646

RESUMO

BACKGROUND: Mapping of T1 and T2 relaxation times in cardiac MRI is an invaluable tool for the diagnosis and risk stratification of a wide spectrum of cardiac diseases. PURPOSE: To investigate the global and regional reproducibility of native T1 and T2 mapping and to analyze the influence of demographic factors, physiological parameters, slice position, and myocardial regions on reproducibility. STUDY TYPE: Prospective single-center cohort-study. POPULATION: Fifty healthy volunteers (29 female, 21 male) with a mean age of 39.4 ± 13.7 years. FIELD STRENGTH/SEQUENCE: Each volunteer was investigated twice at 1.5 T using a modified look-locker inversion-recovery (MOLLI) sequence (T1 mapping) and a T2-prepared steady-state free precession (SSFP) sequence (T2 mapping). ASSESSMENT: Global T1 and T2 values were quantified for the entire left ventricle in three short-axis slices. Regional T1 and T2 values were measured for each myocardial segment and for myocardial segments grouped by slice position and anatomical region. STATISTICAL TESTS: Test-retest reproducibility was assessed using intraclass correlation coefficient (ICC) and Bland-Altman statistics. A P value < 0.05 was considered statistically significant. RESULTS: Reproducibility was good for global T1 values (ICC 0.88) and excellent for global T2 values (ICC 0.91). Reproducibility of T1 values was excellent (ICC 0.91) for midventricular slice and good for apical (ICC 0.86) and basal slice (ICC 0.81). Reproducibility of T1 mapping values was highest in the septum (ICC 0.90) compared to the anterior (0.81), lateral (0.86), and inferior (0.86) wall. For T2 mapping, reproducibility was good for all slice positions (ICC 0.86 for midventricular, 0.83 for basal, and 0.80 for apical slice). Reproducibility of T2 mapping was significantly lower for the inferior wall (ICC 0.58) than for septum (0.89), anterior (0.85), and lateral (0.87) wall. DATA CONCLUSION: Native T1 and T2 mapping has good to excellent reproducibility with significant regional differences. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Coração , Imageamento por Ressonância Magnética , Adulto , Feminino , Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
12.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 111-122, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32743758

RESUMO

Transcranial direct current stimulation (tDCS) over prefrontal cortex (PFC) regions is currently proposed as therapeutic intervention for major depression and other psychiatric disorders. The in-depth mechanistic understanding of this bipolar and non-focal stimulation technique is still incomplete. In a pilot study, we investigated the effects of bifrontal stimulation on brain metabolite levels and resting state connectivity under the cathode using multiparametric MRI techniques and computational tDCS modeling. Within a double-blind cross-over design, 20 subjects (12 women, 23.7 ± 2 years) were randomized to active tDCS with standard bifrontal montage with the anode over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the right DLPFC. Magnetic resonance spectroscopy (MRS) was acquired before, during, and after prefrontal tDCS to quantify glutamate (Glu), Glu + glutamine (Glx) and gamma aminobutyric acid (GABA) concentration in these areas. Resting-state functional connectivity MRI (rsfcMRI) was acquired before and after the stimulation. The individual distribution of tDCS induced electric fields (efields) within the MRS voxel was computationally modelled using SimNIBS 2.0. There were no significant changes of Glu, Glx and GABA levels across conditions but marked differences in the course of Glu levels between female and male participants were observed. Further investigation yielded a significantly stronger Glu reduction after active compared to sham stimulation in female participants, but not in male participants. For rsfcMRI neither significant changes nor correlations with MRS data were observed. Exploratory analyses of the effect of efield intensity distribution on Glu changes showed distinct effects in different efield groups. Our findings are limited by the small sample size, but correspond to previously published results of cathodal tDCS. Future studies should address gender and efield intensity as moderators of tDCS induced effects.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Descanso , Estimulação Transcraniana por Corrente Contínua , Córtex Pré-Frontal Dorsolateral , Eletrodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
13.
Acta Oncol ; 58(10): 1429-1434, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271093

RESUMO

Introduction: The recent developments of magnetic resonance (MR) based adaptive strategies for photon and, potentially for proton therapy, require a fast and reliable conversion of MR images to X-ray computed tomography (CT) values. CT values are needed for photon and proton dose calculation. The improvement of conversion results employing a 3D deep learning approach is evaluated. Material and methods: A database of 89 T1-weighted MR head scans with about 100 slices each, including rigidly registered CTs, was created. Twenty-eight validation patients were randomly sampled, and four patients were selected for application. The remaining patients were used to train a 2D and a 3D U-shaped convolutional neural network (Unet). A stack size of 32 slices was used for 3D training. For all application cases, volumetric modulated arc therapy photon and single-field uniform dose pencil-beam scanning proton plans at four different gantry angles were optimized for a generic target on the CT and recalculated on 2D and 3D Unet-based pseudoCTs. Mean (absolute) error (MAE/ME) and a gradient sharpness estimate were used to quantify the image quality. Three-dimensional gamma and dose difference analyses were performed for photon (gamma criteria: 1%, 1 mm) and proton dose distributions (gamma criteria: 2%, 2 mm). Range (80% fall off) differences for beam's eye view profiles were evaluated for protons. Results: Training 36 h for 1000 epochs in 3D (6 h for 200 epochs in 2D) yielded a maximum MAE of 147 HU (135 HU) for the application patients. Except for one patient gamma pass rates for photon and proton dose distributions were above 96% for both Unets. Slice discontinuities were reduced for 3D training at the cost of sharpness. Conclusions: Image analysis revealed a slight advantage of 2D Unets compared to 3D Unets. Similar dose calculation performance was reached for the 2D and 3D network.


Assuntos
Neoplasias Encefálicas/radioterapia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Aprendizado Profundo , Relação Dose-Resposta à Radiação , Cabeça/diagnóstico por imagem , Humanos , Fótons/uso terapêutico , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos
15.
Neuroimage Clin ; 42: 103597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522363

RESUMO

OBJECTIVE: Intracranial volume (ICV) represents the maximal brain volume for an individual, attained prior to late adolescence and remaining constant throughout life after. Thus, ICV serves as a surrogate marker for brain growth integrity. To assess the potential impact of adult-onset multiple sclerosis (MS) and its preceding prodromal subclinical changes on ICV in a large cohort of monozygotic twins clinically discordant for MS. METHODS: FSL software was used to derive ICV estimates from 3D-T1-weighted-3 T-MRI images by using an atlas scaling factor method. ICV were compared between clinically affected and healthy co-twins. All twins were compared to a large healthy reference cohort using standardized ICV z-scores. Mixed models assessed the impact of age at MS diagnosis on ICV. RESULTS: 54 twin-pairs (108 individuals/80female/42.45 ± 11.98 years), 731 individuals (375 non-twins, 109/69 monozygotic/dizygotic twin-pairs; 398female/29.18 ± 0.13 years) and 35 healthy local individuals (20male/31.34 ± 1.53 years). In 45/54 (83 %) twin-pairs, both clinically affected and healthy co-twins showed negative ICV z-scores, i.e., ICVs lower than the average of the healthy reference cohort (M = -1.53 ± 0.11, P<10-5). Younger age at MS diagnosis was strongly associated with lower ICVs (t = 3.76, P = 0.0003). Stratification of twin-pairs by age at MS diagnosis of the affected co-twin (≤30 versus > 30 years) yielded lower ICVs in those twin pairs with younger age at diagnosis (P = 0.01). Comparison within individual twin-pairs identified lower ICVs in the MS-affected co-twins with younger age at diagnosis compared to their corresponding healthy co-twins (P = 0.003). CONCLUSION: We offer for the first-time evidence for strong associations between adult-onset MS and lower ICV, which is more pronounced with younger age at diagnosis. This suggests pre-clinical alterations in early neurodevelopment associated with susceptibility to MS both in individuals with and without clinical manifestation of the disease.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Esclerose Múltipla , Gêmeos Monozigóticos , Humanos , Adulto , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Adulto Jovem , Idade de Início , Tamanho do Órgão
16.
J Psychiatr Res ; 173: 131-138, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531143

RESUMO

Cognitive deficits are a core symptom of schizophrenia, but research on their neural underpinnings has been challenged by the heterogeneity in deficits' severity among patients. Here, we address this issue by combining logistic regression and random forest to classify two neuropsychological profiles of patients with high (HighCog) and low (LowCog) cognitive performance in two independent samples. We based our analysis on the cortical features grey matter volume (VOL), cortical thickness (CT), and mean curvature (MC) of N = 57 patients (discovery sample) and validated the classification in an independent sample (N = 52). We investigated which cortical feature would yield the best classification results and expected that the 10 most important features would include frontal and temporal brain regions. The model based on MC had the best performance with area under the curve (AUC) values of 76% and 73%, and identified fronto-temporal and occipital brain regions as the most important features for the classification. Moreover, subsequent comparison analyses could reveal significant differences in MC of single brain regions between the two cognitive profiles. The present study suggests MC as a promising neuroanatomical parameter for characterizing schizophrenia cognitive subtypes.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo , Substância Cinzenta/diagnóstico por imagem , Cognição
17.
Clin Cancer Res ; 30(20): 4618-4634, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39150564

RESUMO

PURPOSE: Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in the brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN: We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n = 41), astrocytoma WHO grade 2 (n = 7), and healthy controls (n = 20) and compared TSPO-PET signals of the non-lesion (i.e., contralateral) hemisphere. Back-translation into syngeneic SB28 glioblastoma mice was used to characterize Pet alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS: Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS: Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Doenças Neuroinflamatórias , Receptores de GABA , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Humanos , Animais , Camundongos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/diagnóstico , Adulto , Tomografia por Emissão de Pósitrons/métodos , Idoso , Prognóstico , Microambiente Tumoral/imunologia , Modelos Animais de Doenças
18.
J Neurol ; 270(1): 71-81, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36197569

RESUMO

Knowledge of the physiological endolymphatic space (ELS) is necessary to estimate endolymphatic hydrops (ELH) in patients with vestibulocochlear syndromes. Therefore, the current study investigated age-dependent changes in the ELS of participants with normal vestibulocochlear testing. Sixty-four ears of 32 participants with normal vestibulocochlear testing aged between 21 and 75 years (45.8 ± 17.2 years, 20 females, 30 right-handed, two left-handed) were examined by intravenous delayed gadolinium-enhanced magnetic resonance imaging of the inner ear (iMRI). Clinical diagnostics included neuro-otological assessment, video-oculography during caloric stimulation, and head-impulse test. iMRI data analysis provided semi-quantitative visual grading and automatic algorithmic quantitative segmentation of ELS volume (3D, mm3) using a deep learning-based segmentation of the inner ear's total fluid space (TFS) and volumetric local thresholding, as described earlier. As a result, following a 4-point ordinal scale, a mild ELH (grade 1) was found in 21/64 (32.8%) ears uni- or bilaterally in either cochlear, vestibulum, or both. Age and ELS were found to be positively correlated for the inner ear (r(64) = 0.33, p < 0.01), and vestibulum (r(64) = 0.25, p < 0.05). For the cochlea, the values correlated positively without reaching significance (r(64) = 0.21). In conclusion, age-dependent increases of the ELS should be considered when evaluating potential ELH in single subjects and statistical group comparisons.


Assuntos
Orelha Interna , Hidropisia Endolinfática , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Síndrome
19.
Radiol Artif Intell ; 5(6): e220239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074782

RESUMO

Purpose: To analyze the performance of deep learning (DL) models for segmentation of the neonatal lung in MRI and investigate the use of automated MRI-based features for assessment of neonatal lung disease. Materials and Methods: Quiet-breathing MRI was prospectively performed in two independent cohorts of preterm infants (median gestational age, 26.57 weeks; IQR, 25.3-28.6 weeks; 55 female and 48 male infants) with (n = 86) and without (n = 21) chronic lung disease (bronchopulmonary dysplasia [BPD]). Convolutional neural networks were developed for lung segmentation, and a three-dimensional reconstruction was used to calculate MRI features for lung volume, shape, pixel intensity, and surface. These features were explored as indicators of BPD and disease-associated lung structural remodeling through correlation with lung injury scores and multinomial models for BPD severity stratification. Results: The lung segmentation model reached a volumetric Dice coefficient of 0.908 in cross-validation and 0.880 on the independent test dataset, matching expert-level performance across disease grades. MRI lung features demonstrated significant correlations with lung injury scores and added structural information for the separation of neonates with BPD (BPD vs no BPD: average area under the receiver operating characteristic curve [AUC], 0.92 ± 0.02 [SD]; no or mild BPD vs moderate or severe BPD: average AUC, 0.84 ± 0.03). Conclusion: This study demonstrated high performance of DL models for MRI neonatal lung segmentation and showed the potential of automated MRI features for diagnostic assessment of neonatal lung disease while avoiding radiation exposure.Keywords: Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm Infant, Lung Segmentation, Lung MRI, BPD Severity Assessment, Deep Learning, Lung Imaging Biomarkers, Lung Topology Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Parraga and Sharma in this issue.

20.
Neuroimage Clin ; 37: 103330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696807

RESUMO

INTRODUCTION: Persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) share behavioural symptoms like anxiety, avoidance, social withdrawal, hyperarousal, or palpitation as well as neurological symptoms like vertigo, stance and gait disorders. Furthermore, previous studies have shown a bidirectional link between vestibulo-spatial and anxiety neural networks. So far, there have been no neuroimaging-studies comparing these groups. OBJECTIVES: The aim of this explorative study was to investigate differences and similarities of neural correlates between these two patient groups and to compare their findings with a healthy control group. METHODS: 63 participants, divided in two patient groups (ANX = 20 and PPPD = 14) and two sex and age matched healthy control groups (HC-A = 16, HC-P = 13) were included. Anxiety and dizziness related pictures were shown during fMRI-measurements in a block-design in order to induce emotional responses. All subjects filled in questionnaires regarding vertigo (VSS, VHQ), anxiety (STAI), depression (BDI-II), alexithymia (TAS), and illness-perception (IPQ). After modelling the BOLD response with a standard canonical HRF, voxel-wise t-tests between conditions (emotional-negative vs neutral stimuli) were used to generate statistical contrast maps and identify relevant brain areas (pFDR < 0.05, cluster size >30 voxels). ROI-analyses were performed for amygdala, cingulate gyrus, hippocampus, inferior frontal gyrus, insula, supramarginal gyrus and thalamus (p ≤ 0.05). RESULTS: Patient groups differed from both HC groups regarding anxiety, dizziness, depression and alexithymia scores; ratings of the PPPD group and the ANX group did differ significantly only in the VSS subscale 'vertigo and related symptoms' (VSS-VER). The PPPD group showed increased neural responses in the vestibulo-spatial network, especially in the supramarginal gyrus (SMG), and superior temporal gyrus (STG), compared to ANX and HC-P group. The PPPD group showed increased neural responses compared to the HC-P group in the anxiety network including amygdala, insula, lentiform gyrus, hippocampus, inferior frontal gyrus (IFG) and brainstem. Neuronal responses were enhanced in visual structures, e.g. fusiform gyrus, middle occipital gyrus, and in the medial orbitofrontal cortex (mOFC) in healthy controls compared to patients with ANX and PPPD, and in the ANX group compared to the PPPD group. CONCLUSIONS: These findings indicate that neuronal responses to emotional information in the PPPD and the ANX group are comparable in anxiety networks but not in vestibulo-spatial networks. Patients with PPPD revealed a stronger neuronal response especially in SMG and STG compared to the ANX and the HC group. These results might suggest higher sensitivity and poorer adaptation processes in the PPPD group to anxiety and dizziness related pictures. Stronger activation in visual processing areas in HC subjects might be due to less emotional and more visual processing strategies.


Assuntos
Tontura , Vertigem , Humanos , Tontura/diagnóstico por imagem , Vertigem/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos de Ansiedade/diagnóstico por imagem , Córtex Cerebral , Ansiedade/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA