Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1338458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469142

RESUMO

Introduction: The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods: We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results: In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion: We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.


Assuntos
Aterosclerose , Hiperlipidemias , Masculino , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Incidência , Camundongos Endogâmicos C57BL , Hiperlipidemias/patologia , Aterosclerose/metabolismo , Colesterol , Circulação Cerebrovascular/fisiologia
2.
Nat Commun ; 15(1): 5745, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987239

RESUMO

Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.


Assuntos
Diabetes Mellitus Experimental , Estresse Oxidativo , Aldeído Pirúvico , Ácido Pirúvico , Animais , Aldeído Pirúvico/metabolismo , Humanos , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Ácido Pirúvico/metabolismo , Masculino , Barreira Hematoencefálica/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA