RESUMO
The performance of metal and polymer foams used in inertial confinement fusion (ICF), inertial fusion energy (IFE), and high-energy-density (HED) experiments is currently limited by our understanding of their nanostructure and its variation in bulk material. We utilized an X-ray-free electron laser (XFEL) together with lensless X-ray imaging techniques to probe the 3D morphology of copper foams at nanoscale resolution (28 nm). The observed morphology of the thin shells is more varied than expected from previous characterizations, with a large number of them distorted, merged, or open, and a targeted mass density 14% less than calculated. This nanoscale information can be used to directly inform and improve foam modeling and fabrication methods to create a tailored material response for HED experiments.
RESUMO
The contamination of water resources with nitrate is a growing and significant problem. Here we report the use of ultramicroporous carbon as a capacitive deionization (CDI) electrode for selectively removing nitrate from an anion mixture. Through moderate activation, we achieve a micropore-size distribution consisting almost exclusively of narrow (<1 nm) pores that are well suited for adsorbing the planar, weakly hydrated nitrate molecule. Cyclic voltammetry measurements reveal an enhanced capacitance for nitrate when compared to chloride as well as significant ion sieving effects when sulfate is the only anion present. We measure high selectivities (S) of both nitrate over sulfate (SNO3/SO4 = 17.8 ± 3.6 at 0.6 V) and nitrate over chloride (SNO3/Cl = 6.1 ± 0.4 at 0.6 V) when performing a constant voltage CDI separation on 3.33 mM/3.33 mM/1.67 mM Cl/NO3/SO4 feedwater. These results are particularly encouraging considering that a divalent interferant was present in the feed. Using molecular dynamics simulations, we examine the solvation characteristics of these ions to better understand why nitrate is preferentially electrosorbed over sulfate and chloride.
Assuntos
Carbono , Purificação da Água , Adsorção , Capacitância Elétrica , Eletrodos , NitratosRESUMO
Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figures of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. Lastly, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.
Assuntos
Purificação da Água/instrumentação , Purificação da Água/métodos , Eletricidade , Eletrodos , Desenho de Equipamento , Porosidade , Prata/química , Cloreto de Sódio , TermodinâmicaRESUMO
Free-standing polymer thin films are typically fabricated using a sacrificial underlayer (between the film and its deposition substrate) or overlayer (on top of the film to assist peeling) in order to facilitate removal of the thin film from its deposition substrate. We show the direct delamination of extraordinarily thin (as thin as 8 nm) films of poly(vinyl formal) (PVF), polystyrene, and poly(methyl methacrylate). Large (up to 13 cm diameter) films of PVF could be captured on wire supports to produce free-standing films. By modifying the substrate to lower the interfacial energy resisting film-substrate separation, the conditions for spontaneous delamination are satisfied even for very thin films. The substrate modification is based on the electrostatic adsorption of a cationic polyelectrolyte. Eliminating the use of sacrificial materials and instead relying on naturally self-limiting adsorption makes this method suitable for large areas. We have observed delamination of films with aspect ratios (ratio of lateral dimension between supports to thickness) of 10(7) and have captured dry, free-standing films with aspect ratios >10(6). Films with an aspect ratio of 10(5) can bear loads up to 10(6) times the mass of the film itself. The presence of the adsorbed layer can be observed using X-ray photoelectron spectroscopy, and this layer is persistent through multiple uses. In the system studied, elimination of sacrificial materials leads to an enhancement in the failure strength of the free-standing thin film. The robustness, persistence, and the self-optimizing nature distinguish this method from various fabrication methods utilizing sacrificial materials and make it a potentially scalable process for the fabrication of ultrathin free-standing or transferrable films for filtration, MEMS, or tissue engineering applications.
RESUMO
Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements.
Assuntos
Salinidade , Cloreto de Sódio/isolamento & purificação , Purificação da Água/instrumentação , Cloretos/análise , Eletricidade , Eletrodos , Íons , Modelos Teóricos , Porosidade , ÁguaRESUMO
Bundles of multi-walled carbon nanotubes of uniform diameter decorated with Ni nanoparticles were synthesized using mesoporous silicates as templates. The ordered morphology and the narrow pore size distribution of mesoporous silicates provide an ideal platform to synthesize uniformly sized carbon nanotubes. In addition, homogeneous sub-10 nm pore sizes of the templates allow in situ formation of catalytic nanoparticles with uniform diameters which end up decorating the carbon nanotubes. The resulting carbon nanotubes are multi-walled with a uniform diameter corresponding to the pore diameter of the template used during the synthesis that are decorated with the catalysts used to synthesize them. They have a narrow size distribution which can be used in many energy related fields of research.
Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Níquel/química , Silicatos/química , Nanopartículas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , PorosidadeRESUMO
Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.
Assuntos
Íons/química , Nanotubos de Carbono/química , Canais Iônicos/química , Transporte de Íons , Porosidade , Eletricidade EstáticaRESUMO
We demonstrate an organic/inorganic hybrid energy-harvesting platform, based on nanostructured piezolelectric arrays embedded in an environmental-responsive polymer matrix, which can self-generate electrical power by scavenging energy from the environment. A proof of principle device is designed, fabricated, and tested using vertically aligned ZnO nanowires and heat as the local energy source. The device layout takes advantage of the collective stretching motion of piezoelectric ZnO NWs, induced by the shape-change of the matrix polymer, to convert the thermal energy into direct current with output power densities of â¼20 nW/cm(2) at a heating temperature of â¼65 °C. The responsive nature of polymeric matrices to various stimuli makes this nanostructured piezoelectric architecture a highly versatile approach to scavenging energy from a multitude of environments including fluid-based and chemical-rich systems.
RESUMO
Understanding sorption in porous carbon electrodes is crucial to many environmental and energy technologies, such as capacitive deionization (CDI), supercapacitor energy storage, and activated carbon filters. In each of these examples, a practical model that can describe ion electrosorption kinetics is highly desirable for accelerating material design. Here, we proposed a multiscale model to study the ion electrosorption kinetics in porous carbon electrodes by combining quantum mechanical simulations with continuum approaches. Our model integrates the Butler-Volmer (BV) equation for sorption kinetics and a continuously stirred tank reactor (CSTR) formulation with atomistic calculations of ion hydration and ion-pore interactions based on density functional theory (DFT). We validated our model experimentally by using ion mixtures in a flow-through electrode CDI device and developed an in-line UV absorption system to provide unprecedented resolution of individual ions in the separation process. We showed that the multiscale model captures unexpected experimental phenomena that cannot be explained by the traditional ion electrosorption theory. The proposed multiscale framework provides a viable approach for modeling separation processes in systems where pore sizes and ion hydration effects strongly influence the sorption kinetics, which can be leveraged to explore possible strategies for improving carbon-based and, more broadly, pore-based technologies.
RESUMO
Capacitive deionization (CDI) devices use cyclical electrosorption on porous electrode surfaces to achieve water desalination. Process modeling and design of CDI systems requires accurate treatment of the coupling among input electrical forcing, input flow rates, and system responses including salt removal dynamics, water recovery, energy storage, and dissipation. Techno-economic analyses of CDI further require a method to calculate and compare between a produced commodity (e.g. desalted water) versus capital and operational costs of the system. We here demonstrate a new modeling and analysis tool for CDI developed as an installable Matlab program that allows direct numerical simulation of CDI dynamics and calculation of key performance and cost parameters. The program is provided for free and is used to run open-source Simulink models. The Simulink environment sends information to the program and allows for a drag and drop design space where users can connect CDI cells to relevant periphery blocks such as grid energy, battery, solar panel, waste disposal, and maintenance/labor cost streams. The program allows for simulation of arbitrary current forcing and arbitrary flow rate forcing of one or more CDI cells. We employ validated well-mixed reactor formulations together with a non-linear circuit model formulation that can accommodate a variety of electric double layer sub-models (e.g. for charge efficiency). The program includes a graphical user interface (GUI) to specify CDI plant parameters, specify operating conditions, run individual tests or parameter batch-mode simulations, and plot relevant results. The techno-economic models convert among dimensional streams of species (e.g. feed, desalted water, and brine), energy, and cost and enable a variety of economic estimates including levelized water costs.
Assuntos
Purificação da Água , Eletricidade , Eletrodos , Cloreto de Sódio , ÁguaRESUMO
Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.
RESUMO
Capacitive deionization (CDI) is a promising water desalination technology that is applicable to the treatment of low-salinity brackish waters and the selective removal of ionic contaminants. In this work, we show that by making a small change in the synthetic procedure of hierarchical carbon aerogel monolith (HCAM) electrodes, we can adjust the pore-size distribution and tailor the selectivity, effectively switching between selective adsorption of calcium or sodium ions. Ion selectivity was measured for a mixture of 5 mM NaCl and 2.5 mM CaCl2. For the low activated flow-through CDI (fteCDI) cell, we observed extremely high sodium selectivity over calcium (SNa/Ca â« 10, no Ca2+ adsorbed) at all of the applied potentials, while for the highly activated fteCDI cell, we observed a selectivity value of 6.6 ± 0.8 at 0.6 V for calcium over sodium that decreased to 2.2 ± 0.03 at 1.2 V. Molecular dynamics simulations indicated that the loss in Ca2+ selectivity over Na+ at high applied voltages could be due to a competition between ion-pore electrostatic interactions and volume exclusion ("crowding") effects. Interestingly, we also find with these simulations that the relative sizes of the ions change due to changes in hydration at a higher voltage.
RESUMO
Water recovery is a measure of the amount of treated water produced relative to the total amount of water processed through the system, and is an important performance metric for any desalination method. Conventional operating methods for desalination using capacitive deionization (CDI) have so far limited water recovery to be about 50%. To improve water recovery for CDI, we here introduce a new operating scheme based on a variable (in time) flow rate wherein a low flow rate during discharge is used to produce a brine volume which is significantly less than the volume of diluent produced. We demonstrate experimentally and study systematically this novel variable flowrate operating scheme in the framework of both constant current and constant voltage charge-discharge modes. We show that the variable flowrate operation can increase water recovery for CDI to very high values of â¼90% and can improve thermodynamic efficiency by about 2- to 3-fold compared to conventional constant flowrate operation. Importantly, this is achieved with minimal performance reductions in salt removal, energy consumption, and volume throughput. Our work highlights that water recovery can be readily improved for CDI at very minimal additional cost using simple flow control schemes.
Assuntos
Purificação da Água , Água , Eletrodos , Cloreto de Sódio , TermodinâmicaRESUMO
In the growing field of capacitive deionization (CDI), a number of performance metrics have emerged to describe the desalination process. Unfortunately, the separation conditions under which these metrics are measured are often not specified, resulting in optimal performance at minimal removal. Here we outline a system of performance metrics and reporting conditions that resolves this issue. Our proposed system is based on volumetric energy consumption (Wh/m3) and throughput productivity (L/h/m2) reported for a specific average concentration reduction, water recovery, and feed salinity. To facilitate and rationalize comparisons between devices, materials, and operation modes, we propose a nominal standard separation of removing 5â¯mM from a 20â¯mM NaCl feed solution at 50% water recovery. We propose this particular separation as a standard, but emphasize that the rationale presented here applies irrespective of separation details. Using our proposed separation, we compare the desalination performance of a flow-through electrode (fte-CDI) cell and a flow between membrane (fb-MCDI) device, showing how significantly different systems can be compared in terms of generally desirable desalination characteristics. In general, we find that performance analysis must be considered carefully so to not allow for ambiguous separation conditions or the maximization of one metric at the expense of another. Additionally, for context and clarity, we discuss a number of important underlying performance indicators and cell characteristics that are not performance measures in and of themselves but can be examined to better understand differences in performance.
Assuntos
Purificação da Água , Eletrodos , Salinidade , Cloreto de Sódio , ÁguaRESUMO
Improved understanding of aqueous solutions at graphitic interfaces is critical for energy storage and water desalination. However, many mechanistic details remain unclear, including how interfacial structure and response are dictated by intrinsic properties of solvated ions under applied voltage. In this work, we combine hybrid first-principles/continuum simulations with electrochemical measurements to investigate adsorption of several alkali-metal cations at the interface with graphene and within graphene slit-pores. We confirm that adsorption energy increases with ionic radius, while being highly dependent on the pore size. In addition, in contrast with conventional electrochemical models, we find that interfacial charge transfer contributes non-negligibly to this interaction and can be further enhanced by confinement. We conclude that the measured interfacial capacitance trends result from a complex interplay between voltage, confinement, and specific ion effects-including ion hydration and charge transfer.
RESUMO
Understanding the behavior of metal ions in room temperature ionic liquids (ILs) is essential for predicting and optimizing performance for technologies like metal electrodeposition; however, many mechanistic details remain enigmatic, including the solvation properties of the ions in ILs and how they are governed by the intrinsic interaction between the ions and the liquid species. Here, we utilize first-principles molecular dynamics simulations to unravel and compare the key structural properties of Ag+ and Cu+ ions in a common room temperature IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. We find that, when compared to Cu+, the larger Ag+ shows a more disordered and flexible solvation structure with a more frequent exchange of the IL species between its solvation shells. In addition, our simulations reveal an interesting analog in the solvation behavior of the ions in the IL and aqueous environments, particularly in the effect of the ion electronic structures on their solvation properties. This work provides fundamental understanding of the intrinsic properties of the metal ions in the IL, while offering mechanistic understanding and strategy for future selection of ILs for metal electrodeposition processes.
RESUMO
Capacitive deionization (CDI) is a promising technique for salt removal and may have potential for highly selective removal of ion species. In this work, we take advantage of functional groups usually used with ionic exchange resins and apply these to CDI. To this end, we functionalize activated carbon with a quaternary amines surfactant and use this surface to selectively and passively (no applied field) trap nitrate ions. We then set the cell voltage to a constant value to regenerate these electrodes, resulting in an inverted capacitive deionization (i-CDI) operation. Unlike resins, we avoid use of concentrated chemicals for regeneration. We measure the selectivity of nitrate versus chloride ions as a function of regeneration voltage and initial chloride concentration. We experimentally demonstrate up to about 6.5-fold (observable) selectivity in a cycle with a regeneration voltage of 0.4â¯V. We also demonstrate a novel multi-pass, air-flush i-CDI operation to selectively enrich nitrate with high water recovery. We further present a dynamic, multi-species electrosorption and equilibrium solution-to-surface chemical reaction model and validate the model with detailed measurements. Our i-CDI system exhibits higher nitrate selectivity at lower voltages; making it possible to reduce NaNO3 concentrations from â¼170â¯ppm to below the limit of maximum allowed values for nitrate in drinking water of about 50â¯ppm NaNO3.
RESUMO
Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant time-scale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (â¼95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DC-offset sinusoidal forcing for CDI operation.
Assuntos
Modelos Teóricos , Purificação da Água/métodos , Eletricidade , Cloreto de Sódio/isolamento & purificação , Purificação da Água/instrumentaçãoRESUMO
Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds. Results of experiments strongly support this hypothesis. Results show that cycle efficiency and salt removal for a given flowrate and current are maximum when average EDL and flow efficiencies are approximately equal. We further explored a range of CC operations with varying flowrates, currents, and voltage thresholds using our similarity variables to highlight trade-offs among salt removal, energy, and throughput performance.
Assuntos
Purificação da Água/métodos , Adsorção , Capacitância Elétrica , Eletricidade , Eletrodos , Íons , Modelos Teóricos , Cloreto de Sódio/isolamento & purificação , Purificação da Água/instrumentaçãoRESUMO
Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation.