Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(12): 10464-10489, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38866424

RESUMO

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.


Assuntos
Administração Intravenosa , Animais , Administração Oral , Camundongos , Relação Estrutura-Atividade , Humanos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Estrutura Molecular
2.
J Med Chem ; 65(22): 15174-15207, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378954

RESUMO

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure-activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule.


Assuntos
Lisina , Fatores de Transcrição , Humanos , Lisina/metabolismo , Ligantes , Domínios Proteicos , Histonas/metabolismo
3.
J Med Chem ; 63(2): 714-746, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31904959

RESUMO

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Quimiocina CCL2/biossíntese , Cristalografia por Raios X , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Interleucina-6/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Modelos Moleculares , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA