Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Photosynth Res ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546812

RESUMO

Cyanobacteria are among the most suitable organisms for the capture of excessive amounts of CO2 and can be grown in extreme environments. In our research we use the single-celled freshwater cyanobacteria Synechococcus elongatus PCC7942 PAMCOD strain and Synechocystis sp. PCC6714 for the production of carbohydrates and hydrogen. PAMCOD strain and Synechocystis sp. PCC6714 synthesize sucrose when exposed to salinity stress, as their main compatible osmolyte. We examined the cell proliferation rate and the sucrose accumulation in those two different strains of cyanobacteria under salt (0.4 M NaCl) and heat stress (35 0C) conditions. The intracellular sucrose (mol sucrose content per Chl a) was found to increase by 50% and 108% in PAMCOD strain and Synechocystis sp. PCC6714 cells, respectively. As previously reported, PAMCOD strain has the ability to produce hydrogen through the process of dark anaerobic fermentation (Vayenos D, Romanos GE, Papageorgiou GC, Stamatakis K (2020) Photosynth Res 146, 235-245). In the present study, we demonstrate that Synechocystis sp. PCC6714 has also this ability. We further examined the optimal conditions during the dark fermentation of PAMCOD and Synechocystis sp. PCC6714 regarding H2 formation, increasing the PAMCOD H2 productivity from 2 nmol H2 h- 1 mol Chl a- 1 to 23 nmol H2 h- 1 mol Chl a- 1. Moreover, after the dark fermentation, the cells demonstrated proliferation in both double BG-11 and BG-11 medium enriched in NaNO3, thus showing the sustainability of the procedure.

2.
Chemistry ; 29(51): e202301400, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376954

RESUMO

This work describes a multi-step modification process for the covalent transformation of Kevlar fabric en route to the incorporation of graphene oxide (GO) nanosheets. Spectroscopic, thermal and microscopy imaging techniques have been employed to follow step-by-step the modification of Kevlar and the formation of the corresponding Kevlar-GO hybrid fabric. The level of Kevlar's functionalization can be controlled with the nitration time, the first reaction in the multi-sequence organic transformations, for obtaining the hybrid fabric with a content of GO up to 30 %. Most importantly, the covalent post-modification of Kevlar does not occur in the expense of the other excellent mechanical properties of the fabric. Under optimal conditions, the Kevlar-GO hybrid fabric shows a 20 % enhancement of the ultimate strength. Notably, when the Kevlar-GO hybrid fabric was exposed to cyanobacterial Synechococcus the bacteria growth was fully inhibited. Overall, the covalently modified fabric demonstrated significant antibacterial behavior, excellent strength and stability under common processes. Due to its simplicity, the methodology presented in this work not only promises to result in a standard procedure to functionalize the mer units of Kevlar with a variety of chemicals and nanomaterials but it can be also extended for the modification and hybridization of other fabrics.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química
3.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513342

RESUMO

The surface modification of fabrics composed of Kevlar®, Nomex®, or VAR was extensively investigated. Kevlar® and Nomex® are widely-utilized aramid materials, whereas VAR is a technical fabric comprising 64% viscose, 24% para-aramid (Kevlar®), 10% polyamide, and 2% antistatic fibers. Both aramid materials and cellulose/viscose exhibit exceptional mechanical properties that render them valuable in a wide range of applications. For the herein studied modification of Kevlar®, Nomex®, and VAR, we used small organic molecules 3-allyl-5,5-dimethylhydantoin (ADMH) and 3-(acrylamidopropyl)trimethylammonium chloride (APTAC), which were anchored onto the materials under study via graft polymerization. By doing so, excellent antibacterial properties were induced in the three studied fabrics. Their water repellency was improved in most cases as well. Extensive characterization studies were conducted to probe the properties of the modified materials, employing Raman and FTIR spectroscopies, Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA).

4.
Water Sci Technol ; 84(6): 1438-1451, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34559078

RESUMO

Industrial wastewaters are recognized as a valuable resource, however, their disposal without proper treatment can result in environmental deterioration. The associated environmental/operational cost of wastewater treatment necessitates upgrade of applied processes towards the goals of sustainability and mitigation of climate change. The implementation of cyanobacteria-based processes can contribute to these goals via resources recovery, production of high-value products, carbon fixation and green-energy production. The present study evaluates the cyanobacterium Synechococcus elongatus PCC 7942 (S7942) as a biological component for novel and sustainable alternatives to typical biological nutrient removal processes. Valuable results regarding cultivation temperature boundaries, applied disinfection techniques and analytical methods, as well as regarding relations between parameters expressing S7942 biomass concentration are presented. The results show that at typical industrial wastewater temperatures, S7942 efficiently grew and removed nitrates from treated snack-industry's wastewater. Moreover, in cultures with treated and relatively saline dairy wastewater, its growth rate slightly decreased, but nevertheless nitrates removal rate remained efficiently high. A comparison between typical denitrification processes and the proposed nutrient removal process indicated that a S7942-based system may constitute an alternative or a supplementary to denitrification process. Thus, Synechococcus elongatus PCC 7942 proved to be a potent candidate towards sustainable industrial wastewater treatment applications.


Assuntos
Synechococcus , Purificação da Água , Engenharia Metabólica , Synechococcus/genética
5.
Photosynth Res ; 146(1-3): 235-245, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32301003

RESUMO

Sucrose, a compatible osmolyte in cyanobacteria, functions both as an energy reserve and as osmoprotectant. Sugars are the most common substrates used by microorganisms to produce hydrogen (H2) by means of anaerobic dark fermentation. Cells of the unicellular, non-nitrogen fixing, freshwater cyanobacterium Synechococcus elongatus PCC7942 accumulate sucrose under salt stress. In the present work, we used this cyanobacterium and a genetically engineered strain of it (known as PAMCOD) to investigate the optimal conditions for (a) photosynthetic activity, (b) cell proliferation and (c) sucrose accumulation, which are necessary for H2 production via anaerobic dark fermentation of the accumulated sucrose. PAMCOD (Deshnium et al. in Plant Mol Biol 29:897-902, 1995) contains the gene codA that codes for choline oxidase, the enzyme which converts choline to the zwitterion glycine betaine. Glycine betaine is a compatible osmolyte which increases the salt tolerance of Synechococcus elongatus PCC7942. Furthermore, glycine betaine maintains cell proliferation under salt stress and results in increased sucrose accumulation. In the present study, we examine the environmental factors, such as the NaCl concentration, the culture medium pH, and the carbon dioxide content of the air bubbled through it. At optimal conditions, sucrose accumulated in the cyanobacteria cells up to 13.5 mol per mole Chl a. Overall, genetically engineered Synechococcus elongatus PCC7942 produces sucrose in sufficient quantities such that it may be a viable alternative (a) to sucrose synthesis, and (b) to H2 formation via anaerobic dark fermentation.


Assuntos
Fotossíntese/fisiologia , Sacarose/metabolismo , Synechococcus/fisiologia , Metabolismo dos Carboidratos , Fermentação , Hidrogênio/metabolismo , Tolerância ao Sal , Estresse Fisiológico , Synechococcus/química
6.
Biochim Biophys Acta Bioenerg ; 1858(2): 189-195, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27940021

RESUMO

The haptophyte Phaeocystis antarctica and the novel Ross Sea dinoflagellate that hosts kleptoplasts derived from P. antarctica (RSD; R.J. Gast et al., 2006, J. Phycol. 42 233-242) were compared for photosynthetic light harvesting and for oxygen evolution activity. Both chloroplasts and kleptoplasts emit chlorophyll a (Chl a) fluorescence peaking at 683nm (F683) at 277K and at 689 (F689) at 77K. Second derivative analysis of the F689 band at 77K revealed two individual contributions centered at 683nm (Fi-683) and at 689 (Fi-689). Using the p-nitrothiophenol (p-NTP) treatment of Kobayashi et al. (Biochim. Biophys. Acta 423 (1976) 80-90) to differentiate between Photosystem (PS) II and I fluorescence emissions, we could identify PS II as the origin of Fi-683 and PS I as the origin of Fi-689. Both emissions could be excited not only by Chl a-selective light (436nm) but also by mycosporine-like amino acids (MAAs)-selective light (345nm). This suggests that a fraction of MAAs must be proximal to Chls a and, therefore, located within the plastids. On the basis of second derivative fluorescence spectra at 77K, of p-NTP resolved fluorescence spectra, as well as of PSII-driven oxygen evolution activities, PS II appears substantially less active (~1/5) in dinoflagellate kleptoplasts than in P. antarctica chloroplasts. We suggest that a diminished role of PS II, a known source of reactive oxygen species, and a diminished dependence on nucleus-encoded light-harvesting proteins, due to supplementary light-harvesting by MAAs, may account for the extraordinary longevity of RSD kleptoplasts.


Assuntos
Cloroplastos/metabolismo , Dinoflagellida/metabolismo , Haptófitas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Longevidade/fisiologia , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Aminoácidos/metabolismo , Regiões Antárticas , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Fluorescência , Luz , Fotossíntese/fisiologia , Plastídeos/metabolismo
7.
Photosynth Res ; 130(1-3): 317-324, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27034066

RESUMO

Singlet-excited oxygen (1O 2* ) has been recognized as the most destructive member of the reactive oxygen species (ROS) which are formed during oxygenic photosynthesis by plants, algae, and cyanobacteria. ROS and 1O 2* are known to damage protein and phospholipid structures and to impair photosynthetic electron transport and de novo protein synthesis. Partial protection is afforded to photosynthetic organism by the ß-carotene (ß-Car) molecules which accompany chlorophyll (Chl) a in the pigment-protein complexes of Photosystem II (PS II). In this paper, we studied the effects of exogenously added ß-Car on the initial kinetic rise of Chl a fluorescence (10-1000 µs, the OJ segment) from the unicellular cyanobacterium Synechococcus sp. PCC7942. We show that the added ß-Car enhances Chl a fluorescence when it is excited at an intensity of 3000 µmol photons m-2 s-1 but not when excited at 1000 µmol photons m-2 s-1. Since ß-Car is an efficient scavenger of 1O 2* , as well as a quencher of 3Chl a * (precursor of 1O 2* ), both of which are more abundant at higher excitations, we assume that the higher Chl a fluorescence in its presence signifies a protective effect against photo-oxidative damages of Chl proteins. The protective effect of added ß-Car is not observed in O2-depleted cell suspensions. Lastly, in contrast to ß-Car, a water-insoluble molecule, a water-soluble scavenger of 1O 2* , histidine, provides no protection to Chl proteins during the same time period (10-1000 µs).


Assuntos
Clorofila/agonistas , Fotossíntese/efeitos dos fármacos , Oxigênio Singlete/metabolismo , Synechococcus/efeitos dos fármacos , beta Caroteno/farmacologia , Clorofila A , Fluorescência , Histidina/farmacologia , Cinética , Luz , Synechococcus/fisiologia , Fatores de Tempo
8.
Photosynth Res ; 130(1-3): 1-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26650229

RESUMO

During September 21-26, 2015, an international conference entitled ''Photosynthesis Research for Sustainability-2015'' was held in honor of George C. Papageorgiou at the Conference Center of the Orthodox Academy of Crete, an exceptionally beautiful location right on the Mediterranean Sea coast, Kolymvari, Chania, Crete, (Greece) (see http://photosynthesis2015.cellreg.org/ ). The meeting was held under the auspices of the Greek "General Secretariat for Research and Technology" (GSRT). We first provide a brief introduction and key contributions of George C. Papageorgiou, the honored scientist, and then information on the conference, on the speakers, and the program. A special feature of this conference was awards given to 13 young investigators, who are recognized in this Report. Several photographs are also included; they show the pleasant ambience at this conference. We invite the readers to the next conference on "Photosynthesis Research for Sustainability-2016," which will honor Nathan Nelson and T. Nejat Veziroglu; it will be held during June 19-25, 2016, in Pushchino, Moscow Region, Russia (see http://photosynthesis2016.cellreg.org/ ).


Assuntos
Fotossíntese , Conservação dos Recursos Naturais , História do Século XX , História do Século XXI , Pesquisa/história
9.
Planta ; 241(5): 1051-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25559941

RESUMO

MAIN CONCLUSION: Green fruits display a high engagement in CEF and enhanced VAZ cycle activity as a response to the demands imposed by their internal aerial conditions, particularly low O 2 , due to gas exchange limitations. In the present study, we used HPLC analysis, post-illumination changes in fluorescence yield under varying O2 and CO2 partial pressures and absorbance changes at 820 nm induced by far-red light to assess the carotenoid composition, the functionality of the xanthophyll cycle (VAZ) and the possibility of an active cyclic e (-) flow (CEF) in the fully exposed green fruits from Nerium oleander and Rosa sp. Equally exposed, mature leaves served as controls. Compared to leaves, fruits display less total chlorophylls and carotenoids but higher Car/Chl ratio, mainly shaped by the increased pools of the VAZ cycle components, in both species. The enhanced VAZ pool size in fruits is combined with a higher mid-day de-epoxidation state (DEPS). Moreover, fruits exhibit considerably lower levels of oxidizable P700, a faster re-reduction of PSI and significantly higher relative magnitude of CEF, irrespective of the O2/CO2 levels applied. We conclude that the higher VAZ investment may serve the enhanced heat dissipation needs in fruits, in the presence of a suppressed linear e (-) flow. In addition, the elevated potential of CEF may replenish the ATP lost due to hypoxia and concurrently facilitate the development of adequate non-photochemical quenching (NPQ), through its contribution to ΔpH increase. Since other non-foliar green organs exhibit a similar photosynthetic pattern, we argue that this may reflect a common strategy for green tissues under similar micro-environmental conditions, particularly hypoxia.


Assuntos
Fotossíntese , Xantofilas/metabolismo , Cromatografia Líquida de Alta Pressão , Hipóxia/metabolismo
10.
J Lipid Res ; 54(1): 164-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23110818

RESUMO

Lipoprotein glomerulopathy (LPG) is a dominant inherited kidney disorder characterized by lipoprotein thrombi in glomerular capillaries. Single-amino-acid mutations in apoE have been associated with the development of the disease, although the mechanism is unknown. In an effort to gain mechanistic insight linking the presence of such mutations and the development of LPG, we evaluated the effects of three of the most common apoE3 variants associated with this disease, namely R145P(Sendai), R147P(Chicago), and R158P(Osaka or Kurashiki), on the structural and conformational integrity of the protein. All three variants were found to have significantly reduced helical content, to expose a larger portion of hydrophobic surface to the solvent, and to be significantly thermodynamically destabilized, often lacking functionally relevant unfolding intermediates. Furthermore, all variants were aggregation prone and had enhanced sensitivity to protease digestion. Finally, although the variants were able to form discoidal lipoprotein particles, discrete subpopulations of poorly formed or aberrant particles were evident. Furthermore, these lipoprotein particles were thermodynamically destabilized and aggregation prone. Overall, our data suggest that these mutations induce a generalized unfolding of the N-terminal domain of apoE3 toward a molten-globule-like structure. ApoE3 N-terminal domain unfolding due to mutation may constitute a common mechanism underlying the protein's association with the pathogenesis of LPG.


Assuntos
Apolipoproteína E3/química , Apolipoproteína E3/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Lipoproteínas/metabolismo , Mutação , Apolipoproteína E3/genética , HDL-Colesterol/química , HDL-Colesterol/metabolismo , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nefropatias/patologia , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Termodinâmica
11.
ACS Omega ; 8(47): 44708-44716, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046315

RESUMO

The present work focuses on the surface coating of VAR technical fibers, consisting of 64% viscose (cellulose), 24% Kevlar, 10% other types of polyamides, and 2% antistatic polymers. Kevlar is an aramid material exhibiting excellent mechanical properties, while cellulose is a natural linear polymer composed of repeating ß-d-glucose units, having several applications in the materials industry. Herein, we synthesized novel, tailor-designed organic molecules possessing functional groups able to anchor on VAR fabrics and cellulose materials, thus altering their properties on demand. To this end, we utilized methyl-α-d-glucopyranose as a model compound, both to optimize the reaction conditions, before applying them to the material and to understand the chemical behavior of the material at the molecular level. The efficient coating of the VAR fabric with the tailor-made compounds was then implemented. Thorough characterization studies using Raman and IR spectroscopies as well as SEM imaging and thermogravimetric analysis were also carried out. The wettability and water repellency and antibacterial properties of the modified VAR fabrics were also investigated in detail. To the best of our knowledge, such an approach has not been previously explored, among other factors regarding the understanding of the anchoring mechanism at the molecular level. The proposed modification protocol holds the potential to improve the properties of various cellulose-based materials beyond VAR fabrics.

12.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036144

RESUMO

Oxidized multi-walled carbon nanotubes (oxCNTs) were functionalized by a simple non-covalent modification procedure using quaternized hyperbranched poly(ethyleneimine) derivatives (QPEIs), with various quaternization degrees. Structural characterization of these hybrids using a variety of techniques, revealed the successful and homogenous anchoring of QPEIs on the oxCNTs' surface. Moreover, these hybrids efficiently dispersed in aqueous media, forming dispersions with excellent aqueous stability for over 12 months. Their cytotoxicity effect was investigated on two types of gram(-) bacteria, an autotrophic (cyanobacterium Synechococcus sp. PCC 7942) and a heterotrophic (bacterium Escherichia coli). An enhanced, dose-dependent antibacterial and anti-cyanobacterial activity against both tested organisms was observed, increasing with the quaternization degree. Remarkably, in the photosynthetic bacteria it was shown that the hybrid materials affect their photosynthetic apparatus by selective inhibition of the Photosystem-I electron transport activity. Cytotoxicity studies on a human prostate carcinoma DU145 cell line and 3T3 mouse fibroblasts revealed that all hybrids exhibit high cytocompatibility in the concentration range, in which they also exhibit both high antibacterial and anti-cyanobacterial activity. Thus, QPEI-functionalized oxCNTs can be very attractive candidates as antibacterial and anti-cyanobacterial agents that can be used for potential applications in the disinfection industry, as well as for the control of harmful cyanobacterial blooms.

13.
Biochim Biophys Acta Bioenerg ; 1860(1): 102-110, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414926

RESUMO

Light state transitions (STs) is a reversible physiological process that oxygenic photosynthetic organisms use in order to minimize imbalances in the electronic excitation delivery to the reaction centers of Photosystems I and II, and thus to optimize photosynthesis. STs have been studied extensively in plants, green algae, red algae and cyanobacteria, but sparsely in algae with secondary red algal plastids, such as diatoms and haptophytes, despite their immense ecological significance. In the present work, we examine whether the haptophyte alga Phaeocystis antarctica, and dinoflagellate cells that host kleptoplasts derived from P. antarctica, both endemic in the Ross Sea, Antarctica, are capable of light adaptive STs. In these organisms, Chl a fluorescence can be excited either by direct light absorption, or indirectly by electronic excitation (EE) transfer from ultraviolet light absorbing mycosporine-like amino acids (MAAs) to Chl a (Stamatakis et al., Biochim. Biophys. Acta 1858 [2017] 189-195). Here we show that, on adaptation to PS II-selective light, dark-adapted P. antarctica cells shift from light state 1 (ST1; more EE ending up in PS II) to light state 2 (ST2; more EE ending up in PS I), as revealed by the spectral distribution of directly-excited Chl a fluorescence and by changes in the macro-organization of pigment-protein complexes evidenced by circular dichroism (CD) spectroscopy. In contrast, no STs are clearly detected in the case of the kleptoplast-hosting dinoflagellate cells, and in the case of indirectly excited Chls a, via MAAs, in P. antarctica cells.


Assuntos
Dinoflagellida/efeitos da radiação , Transferência de Energia , Haptófitas/efeitos da radiação , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Clorofila A/metabolismo , Cloroplastos/efeitos da radiação , Transporte de Elétrons , Fluorescência , Luz , Plastídeos
14.
J Bacteriol ; 190(19): 6318-29, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18641132

RESUMO

Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na(+)/H(+) antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na(+)/H(+) antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na(+)/H(+) antiporter activity of the Na(+)-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (Deltanha1, Deltanha2, Deltanha3, Deltanha4, Deltanha5, and Deltanha7) had a phenotype different from that of the wild type. In particular, DeltanhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while Deltanha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions.


Assuntos
Proteínas de Bactérias/fisiologia , Água Doce/microbiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Synechococcus/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Western Blotting , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/classificação , Trocadores de Sódio-Hidrogênio/genética , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Transcrição Gênica
15.
Biochim Biophys Acta ; 1767(6): 766-72, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17448439

RESUMO

At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at approximately 0.2-1 and M at approximately 100-500 s, with a minimum S at approximately 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS-->Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS-->PS I excitation transfer. Blocking the PBS-->PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobacterial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P-->T fluorescence decay, reminiscent of the typical P-->T fluorescence decay of higher plants and algae. A similar P-->T decay was also displayed by DCMU-treated Synechococcus cells at 2 degrees C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2-->1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P-->T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1-->2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS-->PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.


Assuntos
Cianobactérias/química , Ficobilissomas/metabolismo , Clorofila/química , Clorofila/metabolismo , Transferência de Energia , Cinética , Concentração Osmolar , Espectrometria de Fluorescência
16.
ACS Appl Mater Interfaces ; 9(45): 39781-39789, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058866

RESUMO

The realization of antibacterial surfaces is an important scientific problem, which may be addressed by the use of superhydrophobic surfaces, reducing bacterial adhesion. However, there are several limitations and contradicting reports on the antibacterial efficacy of such surfaces. Moreover, achieving antibacterial action through minimization of adhesion does not ensure complete protection against bacteria. Here, we identify the important factors affecting antibacterial action on superhydrophobic surfaces, emphasizing the role of bacterial concentration, and observing an upper concentration threshold above which antibacterial action of any surface is compromised. Finally, we propose metal enriched, superhydrophobic surfaces, as the "ultimate" "hybrid" antibacterial surfaces for in vitro applications.


Assuntos
Antibacterianos/química , Bactérias , Aderência Bacteriana , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
17.
Stud Health Technol Inform ; 121: 183-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17095816

RESUMO

Quality of Internet health information is essential because it has the potential to benefit or harm a large number of people and it is therefore essential to provide consumers with some tools to aid them in assessing the nature of the information they are accessing and how they should use it without jeopardizing their relationship with their doctor. Organizations around the world are working on establishing standards of quality in the accreditation of health-related web content. For the full success of these initiatives, they must be equipped with technologies that enable the automation of the rating process and allow the continuous monitoring of labelled web sites alerting the labelling agency. In this paper we describe the European project MedIEQ (Quality Labelling of Medical Web Content Using Multilingual Information Extraction) that integrates the efforts of relevant organizations on medical quality labelling, multilingual information retrieval and extraction and semantic resources, from six different European countries (Spain, Germany, Greece, Finland, Czech Republic and Switzerland). The main objectives of MedIEQ are: first, to develop a scheme for the quality labelling of medical web content and provide the tools supporting the creation, maintenance and access of labelling data according to this scheme and second, to specify a methodology for the content analysis of medical web sites according to the MedIEQ scheme and develop the tools that will implement it.


Assuntos
Bases de Dados Factuais/normas , Serviços de Informação/normas , Internet/normas , Controle de Qualidade , Acreditação , Europa (Continente) , Educação em Saúde/normas , Humanos , Armazenamento e Recuperação da Informação , Multilinguismo , Rotulagem de Produtos/normas , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Semântica
18.
J Microbiol Methods ; 121: 1-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26666516

RESUMO

The chlorophyll a fluorescence based antimicrobial susceptibility testing (AST) method presented in a previous work was based on the measurement of Chl a fluorescence of the gram(-) cyanobacterium Synechococcus sp. PCC 7942. Synechococcus sp. PCC 7942 as a gram(-) bacterium is affected by antibacterial agents via mechanisms affecting all gram(-) bacteria, however, as an exclusively phototrophic organism it would also be affected by photosynthesis inhibitory action of an agent that otherwise has no antibacterial properties. In this report, the method is modified by replacing the exclusively phototrophic Synechococcus sp. PCC 7942 with the Synechocystis sp. PCC 6714, capable of both phototrophic and heterotrophic growth in order to add versatility and better reflect the antibacterial effects of surfaces under study towards nonphotosynthetic bacteria.


Assuntos
Anti-Infecciosos/farmacologia , Clorofila/química , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Fluorescência/métodos , Synechococcus/química , Synechococcus/efeitos dos fármacos , Clorofila/análise , Clorofila A , Microbiologia Ambiental , Fluorescência , Fotossíntese/efeitos dos fármacos , Propriedades de Superfície , Synechococcus/crescimento & desenvolvimento , Synechocystis/química , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Têxteis/microbiologia
19.
EBioMedicine ; 13: 132-145, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720394

RESUMO

In addition to oncogenic drivers, signaling nodes can critically modulate cancer-related cellular networks to strength tumor hallmarks. We identify G-protein-coupled receptor kinase 2 (GRK2) as a relevant player in breast cancer. GRK2 is up-regulated in breast cancer cell lines, in spontaneous tumors in mice, and in a proportion of invasive ductal carcinoma patients. Increased GRK2 functionality promotes the phosphorylation and activation of the Histone Deacetylase 6 (HDAC6) leading to de-acetylation of the Prolyl Isomerase Pin1, a central modulator of tumor progression, thereby enhancing its stability and functional interaction with key mitotic regulators. Interestingly, a correlation between GRK2 expression and Pin1 levels and de-acetylation status is detected in breast cancer patients. Activation of the HDAC6-Pin1 axis underlies the positive effects of GRK2 on promoting growth factor signaling, cellular proliferation and anchorage-independent growth in both luminal and basal breast cancer cells. Enhanced GRK2 levels promote tumor growth in mice, whereas GRK2 down-modulation sensitizes cells to therapeutic drugs and abrogates tumor formation. Our data suggest that GRK2 acts as an important onco-modulator by strengthening the functionality of key players in breast tumorigenesis such as HDAC6 and Pin1.


Assuntos
Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Histona Desacetilases/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Transdução de Sinais , Acetilação , Animais , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Quinase 2 de Receptor Acoplado a Proteína G/genética , Expressão Gênica , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Camundongos Transgênicos , Modelos Biológicos , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética , Carga Tumoral
20.
J Microbiol Methods ; 112: 49-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771834

RESUMO

Up to now antimicrobial susceptibility testing (AST) methods are indirect and generally involve the manual counting of bacterial colonies following the extraction of microorganisms from the surface under study and their inoculation in a separate procedure. In this work, an in situ, direct and instrumental method for the evaluation and assessment of antibacterial properties of materials and surfaces is proposed. Instead of indirectly determining antibacterial activity using the typical gram(-) test organisms with the subsequent manual colony count or inhibition zone measurement, the proposed procedure, employs photosynthetic gram(-) cyanobacteria deposited directly onto the surface under study and assesses cell proliferation and viability by a quick, accurate and reproducible instrumental chlorophyll fluorescence spectrophotometric technique. In contrast with existing methods of determination of antibacterial properties, it produces high resolution and quantitative results and is so versatile that it could be used to evaluate the antibacterial properties of any compound (organic, inorganic, natural or man-made) under any experimental conditions, depending on the targeted application.


Assuntos
Clorofila/análise , Cianobactérias/efeitos dos fármacos , Microbiologia Ambiental , Fluorometria/métodos , Testes de Sensibilidade Microbiana/métodos , Propriedades de Superfície , Clorofila A , Cianobactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA