Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255883

RESUMO

In various life forms, fucose-containing glycans play vital roles in immune recognition, developmental processes, plant immunity, and host-microbe interactions. Together with glucose, galactose, N-acetylglucosamine, and sialic acid, fucose is a significant component of human milk oligosaccharides (HMOs). Fucosylated HMOs benefit infants by acting as prebiotics, preventing pathogen attachment, and potentially protecting against infections, including HIV. Although the need for fucosylated derivatives is clear, their availability is limited. Therefore, synthesis methods for various fucosylated oligosaccharides are explored, employing enzymatic approaches and α-L-fucosidases. This work aimed to characterise α-L-fucosidases identified in an alpaca faeces metagenome. Based on bioinformatic analyses, they were confirmed as members of the GH29A subfamily. The recombinant α-L-fucosidases were expressed in Escherichia coli and showed hydrolytic activity towards p-nitrophenyl-α-L-fucopyranoside and 2'-fucosyllactose. Furthermore, the enzymes' biochemical properties and kinetic characteristics were also determined. All four α-L-fucosidases could catalyse transfucosylation using a broad diversity of fucosyl acceptor substrates, including lactose, maltotriose, L-serine, and L-threonine. The results contribute insights into the potential use of α-L-fucosidases for synthesising fucosylated amino acids.


Assuntos
Camelídeos Americanos , Lactente , Animais , Humanos , Fucose , Metagenoma , alfa-L-Fucosidase/genética , Escherichia coli/genética , Fezes , Lactose
2.
Microb Ecol ; 81(1): 36-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803362

RESUMO

Seasonally nitrogen-limited and phosphorus-replete temperate coastal waters generally host dense and diverse diazotrophic communities. Despite numerous studies in marine systems, little is known about diazotrophs and their functioning in oligohaline estuarine environments. Here we applied a combination of nifH transcript and metagenomic shotgun sequencing approaches to investigate temporal shifts in taxonomic composition and nifH activity of size-fractionated diazotrophic communities in a shallow and mostly freshwater coastal lagoon. Patterns in active nifH phylotypes exhibited a clear seasonal succession, which reflected their different tolerances to temperature change and nitrogen (N) availability. Thus, in spring, heterotrophic diazotrophs (Proteobacteria) dominated the nifH phylotypes, while increasing water temperature and depletion of inorganic N fostered heterocystous Cyanobacteria in summer. Metagenomic data demonstrated four main N-cycling pathways and three of them with a clear seasonal pattern: denitrification (spring) → N2 fixation (summer) → assimilative NO3- reduction (fall), with NH4+ uptake into cells occurring across all seasons. Although a substantial denitrification signal was observed in spring, it could have originated from the re-suspended benthic rather than planktonic community. Our results contribute to a better understanding of the realized genetic potential of pelagic N2 fixation and its seasonal dynamics in oligohaline estuarine ecosystems, which are natural coastal biogeochemical reactors.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Água Doce/microbiologia , Ciclo do Nitrogênio/fisiologia , Fixação de Nitrogênio/fisiologia , DNA Ambiental/genética , Estuários , Processos Heterotróficos , Microbiota , Oxirredutases/genética , Filogenia , RNA/genética , Estações do Ano , Microbiologia da Água
3.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32471913

RESUMO

Pyridine and its derivatives constitute the majority of heterocyclic aromatic compounds that occur largely as a result of human activities and contribute to environmental pollution. It is known that they can be degraded by various bacteria in the environment; however, the degradation of unsubstituted pyridine has not yet been completely resolved. In this study, we present data on the pyridine catabolic pathway in Arthrobacter sp. strain 68b at the level of genes, enzymes, and metabolites. The pyr gene cluster, responsible for the degradation of pyridine, was identified in a catabolic plasmid, p2MP. The pathway of pyridine metabolism consisted of four enzymatic steps and ended by the formation of succinic acid. The first step in the degradation of pyridine proceeds through a direct ring cleavage catalyzed by a two-component flavin-dependent monooxygenase system, encoded by pyrA (pyridine monooxygenase) and pyrE genes. The genes pyrB, pyrC, and pyrD were found to encode (Z)-N-(4-oxobut-1-enyl)formamide dehydrogenase, amidohydrolase, and succinate semialdehyde dehydrogenase, respectively. These enzymes participate in the subsequent steps of pyridine degradation. The metabolites of these enzymatic reactions were identified, and this allowed us to reconstruct the entire pyridine catabolism pathway in Arthrobacter sp. 68b.IMPORTANCE The biodegradation pathway of pyridine, a notorious toxicant, is relatively unexplored, as no genetic data related to this process have ever been presented. In this paper, we describe the plasmid-borne pyr gene cluster, which includes the complete set of genes responsible for the degradation of pyridine. A key enzyme, the monooxygenase PyrA, which is responsible for the first step of the catabolic pathway, performs an oxidative cleavage of the pyridine ring without typical activation steps such as reduction or hydroxylation of the heterocycle. This work provides new insights into the metabolism of N-heterocyclic compounds in nature.


Assuntos
Arthrobacter/metabolismo , Genes Bacterianos , Família Multigênica , Piridinas/metabolismo , Biodegradação Ambiental
4.
Molecules ; 23(7)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941849

RESUMO

An inducible promoter region, PTTMP (tetramethylpyrazine [TTMP]), has been identified upstream of the tpdABC operon, which contains the genes required for the initial degradation of 2,3,5,6-tetramethylpyrazine in Rhodococcus jostii TMP1 bacteria. In this work, the promoter region was fused with the gene for the enhanced green fluorescent protein (EGFP) to investigate the activity of PTTMP by measuring the fluorescence of bacteria. The highest promoter activity was observed when bacteria were grown in a nutrient broth (NB) medium supplemented with 5 mM 2,3,5,6-tetramethylpyrazine for 48 h. Using a primer extension reaction, two transcriptional start sites for tpdA were identified, and the putative −35 and −10 promoter motifs were determined. The minimal promoter along with two 15 bp long direct repeats and two 7 bp inverted sequences were identified. Also, the influence of the promoter elements on the activity of PTTMP were determined using site-directed mutagenesis. Furthermore, PTTMP was shown to be induced by pyrazine derivatives containing methyl groups in the 2- and 5-positions of the heterocyclic ring, in the presence of the LuxR family transcriptional activator TpdR.


Assuntos
Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Pirazinas/farmacologia , Rhodococcus/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Rhodococcus/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
5.
Sci Rep ; 10(1): 788, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964920

RESUMO

Human activating signal cointegrator homology (ASCH) domain-containing proteins are widespread and diverse but, at present, the vast majority of those proteins have no function assigned to them. This study demonstrates that the 103-amino acid Escherichia coli protein YqfB, previously identified as hypothetical, is a unique ASCH domain-containing amidohydrolase responsible for the catabolism of N4-acetylcytidine (ac4C). YqfB has several interesting and unique features: i) it is the smallest monomeric amidohydrolase described to date, ii) it is active towards structurally different N4-acylated cytosines/cytidines, and iii) it has a high specificity for these substrates (kcat/Km up to 2.8 × 106 M-1 s-1). Moreover, our results suggest that YqfB contains a unique Thr-Lys-Glu catalytic triad, and Arg acting as an oxyanion hole. The mutant lacking the yqfB gene retains the ability to grow, albeit poorly, on N4-acetylcytosine as a source of uracil, suggesting that an alternative route for the utilization of this compound exists in E. coli. Overall, YqfB ability to hydrolyse various N4-acylated cytosines and cytidines not only sheds light on the long-standing mystery of how ac4C is catabolized in bacteria, but also expands our knowledge of the structural diversity within the active sites of amidohydrolases.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Citosina/metabolismo , Escherichia coli/enzimologia , Acilação , Amidoidrolases/química , Domínio Catalítico , Cristalografia por Raios X , Citosina/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
6.
FEMS Microbiol Lett ; 327(1): 78-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22098420

RESUMO

A cryptic plasmid from Arthrobacter rhombi PRH1, designated as pPRH, was sequenced and characterized. It was 5000 bp in length with a G+C content of 66 mol%. The plasmid pPRH was predicted to encode six putative open reading frames (ORFs), in which ORF2 and ORF3 formed the minimal replicon of plasmid pPRH and shared 55-61% and 60-69% homology, respectively, with the RepA and RepB proteins of reported rhodococcal plasmids. Sequence analysis revealed a typical ColE2-type ori located 45 bp upstream of the gene repA. Sequence and phylogenetic analysis led to the conclusion that pPRH is a representative of a novel group of pAL5000 subfamily of ColE2 family plasmids. Three shuttle vectors pRMU824, pRMU824Km and pRMU824Tc, encoding chloramphenicol resistance, were constructed. The latter two harboured additional antibiotic resistance genes kan and tet, respectively. All vectors successfully replicated in Escherichia coli, Arthrobacter and Rhodococcus spp. The vector pRMU824Km was employed for functional screening of 2-hydroxypyridine catabolism encoding genes from Arthrobacter sp. PY22. Sequence analysis of the cloned 6-kb DNA fragment revealed eight putative ORFs, among which hpyB gene encoded a putative monooxygenase.


Assuntos
Arthrobacter/genética , Escherichia coli/genética , Vetores Genéticos/genética , Plasmídeos/genética , Rhodococcus/genética , Arthrobacter/classificação , Arthrobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/classificação , Escherichia coli/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Piridonas/metabolismo , Rhodococcus/classificação , Rhodococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA