Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 92(5): 593-609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38062872

RESUMO

Transmembrane proteins are active in amphipathic environments. To stabilize the protein in such surrounding the exposure of hydrophobic residues on the protein surface is required. Transmembrane proteins are responsible for the transport of various molecules. Therefore, they often represent structures in the form of channels. This analysis focused on the stability and local flexibility of transmembrane proteins, particularly those related to their biological activity. Different forms of anchorage were identified using the fuzzy oil-drop model (FOD) and its modified form, FOD-M. The mainly helical as well as ß-barrel structural forms are compared with respect to the mechanism of stabilization in the cell membrane. The different anchoring system was found to stabilize protein molecules with possible local fluctuation.


Assuntos
Proteínas de Membrana , Membrana Celular
2.
BMC Bioinformatics ; 24(1): 418, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932669

RESUMO

BACKGROUND: The aqueous environment directs the protein folding process towards the generation of micelle-type structures, which results in the exposure of hydrophilic residues on the surface (polarity) and the concentration of hydrophobic residues in the center (hydrophobic core). Obtaining a structure without a hydrophobic core requires a different type of external force field than those generated by a water. The examples are membrane proteins, where the distribution of hydrophobicity is opposite to that of water-soluble proteins. Apart from these two extreme examples, the process of protein folding can be directed by chaperones, resulting in a structure devoid of a hydrophobic core. RESULTS: The current work presents such example: DnaJ Hsp40 in complex with alkaline phosphatase PhoA-U (PDB ID-6PSI)-the client molecule. The availability of WT form of the folding protein-alkaline phosphatase (PDB ID-1EW8) enables a comparative analysis of the structures: at the stage of interaction with the chaperone and the final, folded structure of this biologically active protein. The fuzzy oil drop model in its modified FOD-M version was used in this analysis, taking into account the influence of an external force field, in this case coming from a chaperone. CONCLUSIONS: The FOD-M model identifies the external force field introduced by chaperon influencing the folding proces. The identified specific external force field can be applied in Ab Initio protein structure prediction as the environmental conditioning the folding proces.


Assuntos
Fosfatase Alcalina , Chaperonas Moleculares , Humanos , Fosfatase Alcalina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Dobramento de Proteína , Água
3.
BMC Bioinformatics ; 24(1): 425, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950210

RESUMO

BACKGROUND: Recently, significant progress has been made in the field of protein structure prediction by the application of artificial intelligence techniques, as shown by the results of the CASP13 and CASP14 (Critical Assessment of Structure Prediction) competition. However, the question of the mechanism behind the protein folding process itself remains unanswered. Correctly predicting the structure also does not solve the problem of, for example, amyloid proteins, where a polypeptide chain with an unaltered sequence adopts a different 3D structure. RESULTS: This work was an attempt at explaining the structural variation by considering the contribution of the environment to protein structuring. The application of the fuzzy oil drop (FOD) model to assess the validity of the selected models provided in the CASP13, CASP14 and CASP15 projects reveals the need for an environmental factor to determine the 3D structure of proteins. Consideration of the external force field in the form of polar water (Fuzzy Oil Drop) and a version modified by the presence of the hydrophobic compounds, FOD-M (FOD-Modified) reveals that the protein folding process is environmentally dependent. An analysis of selected models from the CASP competitions indicates the need for structure prediction as dependent on the consideration of the protein folding environment. CONCLUSIONS: The conditions governed by the environment direct the protein folding process occurring in a certain environment. Therefore, the variation of the external force field should be taken into account in the models used in protein structure prediction.


Assuntos
Inteligência Artificial , Proteínas , Modelos Moleculares , Proteínas/química , Dobramento de Proteína , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica
4.
Proteins ; 91(5): 608-618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36448315

RESUMO

The protein secondary structure (SS) prediction plays an important role in the characterization of general protein structure and function. In recent years, a new generation of algorithms for SS prediction based on embeddings from protein language models (pLMs) is emerging. These algorithms reach state-of-the-art accuracy without the need for time-consuming multiple sequence alignment (MSA) calculations. Long short-term memory (LSTM)-based SPOT-1D-LM and NetSurfP-3.0 are the latest examples of such predictors. We present the ProteinUnetLM model using a convolutional Attention U-Net architecture that provides prediction quality and inference times at least as good as the best LSTM-based models for 8-class SS prediction (SS8). Additionally, we address the issue of the heavily imbalanced nature of the SS8 problem by extending the loss function with the Matthews correlation coefficient, and by proper assessment using previously introduced adjusted geometric mean (AGM) metric. ProteinUnetLM achieved better AGM and sequence overlap score than LSTM-based predictors, especially for the rare structures 310-helix (G), beta-bridge (B), and high curvature loop (S). It is also competitive on challenging datasets without homologs, free-modeling targets, and chameleon sequences. Moreover, ProteinUnetLM outperformed its previous MSA-based version ProteinUnet2, and provided better AGM than AlphaFold2 for 1/3 of proteins from the CASP14 dataset, proving its potential for making a significant step forward in the domain. To facilitate the usage of our solution by protein scientists, we provide an easy-to-use web interface under https://biolib.com/SUT/ProteinUnetLM/.


Assuntos
Memória de Curto Prazo , Redes Neurais de Computação , Proteínas/química , Algoritmos , Estrutura Secundária de Proteína
5.
J Cell Biochem ; 124(6): 818-835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37139783

RESUMO

Generating the structure of the hydrophobic core is based on the orientation of hydrophobic residues towards the central part of the protein molecule with the simultaneous exposure of polar residues. Such a course of the protein folding process takes place with the active participation of the polar water environment. While the self-assembly process leading to the formation of micelles concerns freely moving bi-polar molecules, bipolar amino acids in polypeptide chain have limited mobility due to the covalent bonds. Therefore, proteins form a more or less perfect micelle-like structure. The criterion is the hydrophobicity distribution, which to a greater or lesser extent reproduces the distribution expressed by the 3D Gaussian function on the protein body. The vast majority of proteins must ensure solubility, so a certain part of it-as it is expected-should reproduce the structuring of micelles. The biological activity of proteins is encoded in the part that does not reproduce the micelle-like system. The location and quantitative assessment of the contribution of orderliness to disorder is of critical importance for the determination of biological activity. The form of maladjustment to the 3D Gauss function may be varied-hence the obtained high diversity of specific interactions with strictly defined molecules: ligands or substrates. The correctness of this interpretation was verified on the basis of the group of enzymes Peptidylprolyl isomerase-E.C.5.2.1.8. In proteins representing this class of enzymes, zones responsible for solubility-micelle-like hydrophobicity system-the location and specificity of the incompatible part in which the specific activity of the enzyme is located and coded were identified. The present study showed that the enzymes of the discussed group show two different schemes of the structure of catalytic center (taking into account the status as defined by the fuzzy oil drop model).


Assuntos
Micelas , Peptidilprolil Isomerase , Modelos Moleculares , Proteínas/química , Peptídeos/química
6.
BMC Bioinformatics ; 23(1): 100, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317722

RESUMO

BACKGROUND: The prediction of protein secondary structures is a crucial and significant step for ab initio tertiary structure prediction which delivers the information about proteins activity and functions. As the experimental methods are expensive and sometimes impossible, many SS predictors, mainly based on different machine learning methods have been proposed for many years. Currently, most of the top methods use evolutionary-based input features produced by PSSM and HHblits software, although quite recently the embeddings-the new description of protein sequences generated by language models (LM) have appeared that could be leveraged as input features. Apart from input features calculation, the top models usually need extensive computational resources for training and prediction and are barely possible to run on a regular PC. SS prediction as the imbalanced classification problem should not be judged by the commonly used Q3/Q8 metrics. Moreover, as the benchmark datasets are not random samples, the classical statistical null hypothesis testing based on the Neyman-Pearson approach is not appropriate. RESULTS: We present a lightweight deep network ProteinUnet2 for SS prediction which is based on U-Net convolutional architecture and evolutionary-based input features (from PSSM and HHblits) as well as SPOT-Contact features. Through an extensive evaluation study, we report the performance of ProteinUnet2 in comparison with top SS prediction methods based on evolutionary information (SAINT and SPOT-1D). We also propose a new statistical methodology for prediction performance assessment based on the significance from Fisher-Pitman permutation tests accompanied by practical significance measured by Cohen's effect size. CONCLUSIONS: Our results suggest that ProteinUnet2 architecture has much shorter training and inference times while maintaining results similar to SAINT and SPOT-1D predictors. Taking into account the relatively long times of calculating evolutionary-based features (from PSSM in particular), it would be worth conducting the predictive ability tests on embeddings as input features in the future. We strongly believe that our proposed here statistical methodology for the evaluation of SS prediction results will be adopted and used (and even expanded) by the research community.


Assuntos
Biologia Computacional , Proteínas , Sequência de Aminoácidos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Estrutura Secundária de Proteína , Proteínas/química
7.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613597

RESUMO

The amyloid structures and their wild type forms, available in the PDB database, provide the basis for comparative analyses. Globular proteins are characterised by a 3D spatial structure, while a chain in any amyloid fibril has a 2D structure. Another difference lies in the structuring of the hydrogen bond network. Amyloid forms theoretically engage all the NH and C=O groups of the peptide bonds in a chain with two hydrogen bonds each. In addition, the hydrogen bond network is highly ordered-as perpendicular to the plane of the chain. The ß-structure segments provide the hydrogen bond system with an anti-parallel system. The folds appearing in the rectilinear propagation of the segment with the ß-structure are caused by just by one of the residues in the sequence-residues with a Rα-helical or Lα-helical conformation. The antiparallel system of the hydrogen bonds in the ß-structure sections at the site of the amino acid with a Rα- or Lα-helical conformation changes into a parallel system locally. This system also ensures that the involvement of the C=O and H-N groups in the construction of the interchain hydrogen bond, while maintaining a perpendicular orientation towards the plane of the chain. Conformational analysis at the level of the Phi and Psi angles indicates the presence of the conditions for the structures observed in the amyloids. The specificity of amyloid structures with the dominant conformation expressed as |Psi| = |Phi| reveals the system of organisation present in amyloid fibrils. The Phi, Psi angles, as present in this particular structure, transformed to form |Psi| = |Phi| appear to be ordered co-linearly. Therefore, the calculation of the correlation coefficient may express the distribution around this idealised localisation on the Ramachandran map. Additionally, when the outstanding points are eliminated, the part of amyloid chain can be classified as fulfilling the defined conditions. In addition, the presentation of the chain structure using geometric parameters, V-angle-the angle between the planes of the adjacent peptide bonds (angle versus the virtual axis Cα-Cα) and the radius of the curvature R, depending on the size of the angle V, allows for a quantitative assessment of changes during amyloid transformation.


Assuntos
Aminoácidos , Amiloide , Amiloide/química , Modelos Moleculares , Estrutura Secundária de Proteína , Aminoácidos/química , Peptídeos/química , Conformação Proteica
8.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012765

RESUMO

The specificity of the available experimentally determined structures of amyloid forms is expressed primarily by the two- and not three-dimensional forms of a single polypeptide chain. Such a flat structure is possible due to the ß structure, which occurs predominantly. The stabilization of the fibril in this structure is achieved due to the presence of the numerous hydrogen bonds between the adjacent chains. Together with the different forms of twists created by the single R- or L-handed α-helices, they form the hydrogen bond network. The specificity of the arrangement of these hydrogen bonds lies in their joint orientation in a system perpendicular to the plane formed by the chain and parallel to the fibril axis. The present work proposes the possible mechanism for obtaining such a structure based on the geometric characterization of the polypeptide chain constituting the basis of our early intermediate model for protein folding introduced formerly. This model, being the conformational subspace of Ramachandran plot (the ellipse path), was developed on the basis of the backbone conformation, with the side-chain interactions excluded. Our proposal is also based on the results from molecular dynamics available in the literature leading to the unfolding of α-helical sections, resulting in the ß-structural forms. Both techniques used provide a similar suggestion in a search for a mechanism of conformational changes leading to a formation of the amyloid form. The potential mechanism of amyloid transformation is presented here using the fragment of the transthyretin as well as amyloid Aß.


Assuntos
Amiloide , Dobramento de Proteína , Amiloide/metabolismo , Proteínas Amiloidogênicas , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Peptídeos
9.
J Comput Chem ; 42(1): 50-59, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058261

RESUMO

Predicting protein function and structure from sequence remains an unsolved problem in bioinformatics. The best performing methods rely heavily on evolutionary information from multiple sequence alignments, which means their accuracy deteriorates for sequences with a few homologs, and given the increasing sequence database sizes requires long computation times. Here, a single-sequence-based prediction method is presented, called ProteinUnet, leveraging an U-Net convolutional network architecture. It is compared to SPIDER3-Single model, based on long short-term memory-bidirectional recurrent neural networks architecture. Both methods achieve similar results for prediction of secondary structures (both three- and eight-state), half-sphere exposure, and contact number, but ProteinUnet has two times fewer parameters, 17 times shorter inference time, and can be trained 11 times faster. Moreover, ProteinUnet tends to be better for short sequences and residues with a low number of local contacts. Additionally, the method of loss weighting is presented as an effective way of increasing accuracy for rare secondary structures.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Aprendizado Profundo , Redes Neurais de Computação , Estrutura Secundária de Proteína , Alinhamento de Sequência
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638925

RESUMO

The role of the environment in amyloid formation based on the fuzzy oil drop model (FOD) is discussed here. This model assumes that the hydrophobicity distribution within a globular protein is consistent with a 3D Gaussian (3DG) distribution. Such a distribution is interpreted as the idealized effect of the presence of a polar solvent-water. A chain with a sequence of amino acids (which are bipolar molecules) determined by evolution recreates a micelle-like structure with varying accuracy. The membrane, which is a specific environment with opposite characteristics to the polar aquatic environment, directs the hydrophobic residues towards the surface. The modification of the FOD model to the FOD-M form takes into account the specificity of the cell membrane. It consists in "inverting" the 3DG distribution (complementing the Gaussian distribution), which expresses the exposure of hydrophobic residues on the surface. It turns out that the influence of the environment for any protein (soluble or membrane-anchored) is the result of a consensus factor expressing the participation of the polar environment and the "inverted" environment. The ratio between the proportion of the aqueous and the "reversed" environment turns out to be a characteristic property of a given protein, including amyloid protein in particular. The structure of amyloid proteins has been characterized in the context of prion, intrinsically disordered, and other non-complexing proteins to cover a wider spectrum of molecules with the given characteristics based on the FOD-M model.


Assuntos
Algoritmos , Proteínas Amiloidogênicas/química , Simulação por Computador , Modelos Teóricos , Conformação Proteica , Dobramento de Proteína , Amiloidose , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/química , Modelos Moleculares , Pré-Albumina/química , alfa-Sinucleína/química , Proteínas tau/química
11.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807215

RESUMO

The water environment determines the activity of biological processes. The role of such an environment interpreted in the form of an external field expressed by the 3D Gaussian distribution in the fuzzy oil drop model directs the folding process towards the generation of a centrally located hydrophobic core with the simultaneous exposure of polar residues on the surface. In addition to proteins soluble in the water environment, there is a significant group of membrane proteins that act as receptors or channels, including ion channels in particular. The change of the polar (water) environment into a highly hydrophobic (membrane) environment is quite radical, resulting in a different hydrophobicity distribution within the membrane protein. Modification of the notation of the force field expressing the presence of the hydrophobic environment has been proposed in this work. A modified fuzzy oil drop model with its adaptation to membrane proteins was used to interpret the structure of membrane proteins-mechanosensitive channel. The modified model was also used to describe the so-called negative cases-i.e., for water-soluble proteins with a clear distribution consistent with the fuzzy oil drop model.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Água/química , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Membranas/química , Membranas/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
12.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948291

RESUMO

Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations-globular proteins and amyloids. The present study shows the source of the differences between these two paths resulting from the specificity of the external force field coming from the environment, including the aquatic and hydrophobic one. The water environment expressed in the fuzzy oil drop model using the 3D Gauss function directs the folding process towards the construction of a micelle-like system with a hydrophobic core in the central part and the exposure of polarity on the surface. The hydrophobicity distribution of membrane proteins has the opposite characteristic: Exposure of hydrophobicity at the surface of the membrane protein with an often polar center (as in the case of ion channels) is expected. The structure of most proteins is influenced by a more or less modified force field generated by water through the appropriate presence of a non-polar (membrane-like) environment. The determination of the proportion of a factor different from polar water enables the assessment of the protein status by indicating factors favoring the structure it represents.


Assuntos
Amiloide/química , Príons/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Conformação Proteica , Dobramento de Proteína , Água/química
13.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066830

RESUMO

Protein solubility is based on the compatibility of the specific protein surface with the polar aquatic environment. The exposure of polar residues to the protein surface promotes the protein's solubility in the polar environment. The aquatic environment also influences the folding process by favoring the centralization of hydrophobic residues with the simultaneous exposure to polar residues. The degree of compatibility of the residue distribution, with the model of the concentration of hydrophobic residues in the center of the molecule, with the simultaneous exposure of polar residues is determined by the sequence of amino acids in the chain. The fuzzy oil drop model enables the quantification of the degree of compatibility of the hydrophobicity distribution observed in the protein to a form fully consistent with the Gaussian 3D function, which expresses an idealized distribution that meets the preferences of the polar water environment. The varied degrees of compatibility of the distribution observed with the idealized one allow the prediction of preferences to interactions with molecules of different polarity, including water molecules in particular. This paper analyzes a set of proteins with different levels of hydrophobicity distribution in the context of the solubility of a given protein and the possibility of complex formation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos , Proteínas Anticongelantes Tipo III/química , Proteínas de Fímbrias/química , Hemoglobinas/química , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Domínios Proteicos , Solubilidade
14.
Entropy (Basel) ; 23(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924717

RESUMO

The two forms of transthyretin differing slightly in the tertiary structure, despite the presence of five mutations, show radically different properties in terms of susceptibility to the amyloid transformation process. These two forms of transthyretin are the object of analysis. The search for the sources of these differences was carried out by means of a comparative analysis of the structure of these molecules in their native and early intermediate stage forms in the folding process. The criterion for assessing the degree of similarity and differences is the status of the hydrophobic core. The comparison of the level of arrangement of the hydrophobic core and its initial stages is possible thanks to the application of divergence entropy for the early intermediate stage and for the final forms. It was shown that the minimal differences observed in the structure of the hydrophobic core of the forms available in PDB, turned out to be significantly different in the early stage (ES) structure in folding process. The determined values of divergence entropy for both ES forms indicate the presence of the seed of hydrophobic core only in the form resistant to amyloid transformation. In the form of aggressively undergoing amyloid transformation, the structure lacking such a seed is revealed, being a stretched one with a high content of ß-type structure. In the discussed case, the active presence of water in the structural transformation of proteins expressed in the fuzzy oil drop model (FOD) is of decisive importance for the generation of the final protein structure. It has been shown that the resistant form tends to generate a centric hydrophobic core with the possibility of creating a globular structure, i.e., a spherical micelle-like form. The aggressively transforming form reveals in the structure of its early intermediate, a tendency to form the ribbon-like micelle as observed in amyloid.

15.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076540

RESUMO

Research on the protein folding problem differentiates the protein folding process with respect to the duration of this process. The current structure encoded in sequence dogma seems to be clearly justified, especially in the case of proteins referred to as fast-folding, ultra-fast-folding or downhill. In the present work, an attempt to determine the characteristics of this group of proteins using fuzzy oil drop model is undertaken. According to the fuzzy oil drop model, a protein is a specific micelle composed of bi-polar molecules such as amino acids. Protein folding is regarded as a spherical micelle formation process. The presence of covalent peptide bonds between amino acids eliminates the possibility of free mutual arrangement of neighbors. An example would be the construction of co-micelles composed of more than one type of bipolar molecules. In the case of fast folding proteins, the amino acid sequence represents the optimal bipolarity system to generate a spherical micelle. In order to achieve the native form, it is enough to have an external force field provided by the water environment which directs the folding process towards the generation of a centric hydrophobic core. The influence of the external field can be expressed using the 3D Gaussian function which is a mathematical model of the folding process orientation towards the concentration of hydrophobic residues in the center with polar residues exposed on the surface. The set of proteins under study reveals a hydrophobicity distribution compatible with a 3D Gaussian distribution, taken as representing an idealized micelle-like distribution. The structure of the present hydrophobic core is also discussed in relation to the distribution of hydrophobic residues in a partially unfolded form.


Assuntos
Dobramento de Proteína , Aminoácidos/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Proteínas Virais/química
16.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630137

RESUMO

The issue of changing the structure of globular proteins into an amyloid form is in the focus of researchers' attention. Numerous experimental studies are carried out, and mathematical models to define the essence of amyloid transformation are sought. The present work focuses on the issue of the hydrophobic core structure in amyloids. The form of ordering the hydrophobic core in globular proteins is described by a 3D Gaussian distribution analog to the distribution of hydrophobicity in a spherical micelle. Amyloid fibril is a ribbon-like micelle made up of numerous individual chains, each representing a flat structure. The distribution of hydrophobicity within a single chain included in the fibril describes the 2D Gaussian distribution. Such a description expresses the location of polar residues on a circle with a center with a high level of hydrophobicity. The presence of this type of order in the amyloid forms available in Preotin Data Bank (PDB) (both in proto- and superfibrils) is demonstrated in the present work. In this system, it can be assumed that the amyloid transformation is a chain transition from 3D Gauss ordering to 2D Gauss ordering. This means changing the globular structure to a ribbon-like structure. This observation can provide a simple mathematical model for simulating the amyloid transformation of proteins.


Assuntos
Proteínas Amiloidogênicas/química , Modelos Químicos , Conformação Proteica , Distribuição Normal , Dobramento de Proteína
17.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505841

RESUMO

Protein structure is the result of the high synergy of all amino acids present in the protein. This synergy is the result of an overall strategy for adapting a specific protein structure. It is a compromise between two trends: The optimization of non-binding interactions and the directing of the folding process by an external force field, whose source is the water environment. The geometric parameters of the structural form of the polypeptide chain in the form of a local radius of curvature that is dependent on the orientation of adjacent peptide bond planes (result of the respective Phi and Psi rotation) allow for a comparative analysis of protein structures. Certain levels of their geometry are the criteria for comparison. In particular, they can be used to assess the differences between the structural form of biologically active proteins and their amyloid forms. On the other hand, the application of the fuzzy oil drop model allows the assessment of the role of amino acids in the construction of tertiary structure through their participation in the construction of a hydrophobic core. The combination of these two models-the geometric structure of the backbone and the determining of the participation in the construction of the tertiary structure that is applied for the comparative analysis of biologically active and amyloid forms-is presented.


Assuntos
Amiloide/química , Modelos Moleculares , Dobramento de Proteína , Humanos
18.
J Comput Aided Mol Des ; 29(7): 609-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808133

RESUMO

The polypeptide chain folding process appears to be a multi-stage phenomenon. The scientific community has recently devoted much attention to early stages of this process, with numerous attempts at simulating them--either experimentally or in silico. This paper presents a comparative analysis of the predicted and observed results of folding simulations. The proposed technique, based on statistical dictionaries, yields a global accuracy of 57%--a marked improvement over older approaches (with an accuracy of approximately 46%).


Assuntos
Modelos Moleculares , Dobramento de Proteína , Algoritmos , Aminoácidos/química , Simulação por Computador , Bases de Dados de Proteínas , Modelos Estatísticos , Conformação Proteica
19.
Front Chem ; 12: 1342434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595701

RESUMO

Introduction: The protein folding process is very sensitive to environmental conditions. Many possibilities in the form of numerous pathways for this process can-if an incorrect one is chosen-lead to the creation of forms described as misfolded. The aqueous environment is the natural one for the protein folding process. Nonetheless, other factors such as the cell membrane and the presence of specific molecules (chaperones) affect this process, ensuring the correct expected structural form to guarantee biological activity. All these factors can be considered components of the external force field for this process. Methods: The fuzzy oil drop-modified (FOD-M) model makes possible the quantitative evaluation of the modification of the external field, treating the aqueous environment as a reference. The FOD-M model (tested on membrane proteins) includes the component modifying the water environment, allowing the assessment of the external force field generated by prefoldin. Results: In this work, prefoldin was treated as the provider of a specific external force field for actin and tubulin. The discussed model can be applied to any folding process simulation, taking into account the changed external conditions. Hence, it can help simulate the in silico protein folding process under defined external conditions determined by the respective external force field. In this work, the structures of prefoldin and protein folded with the participation of prefoldin were analyzed. Discussion: Thus, the role of prefoldin can be treated as a provider of an external field comparable to other environmental factors affecting the protein folding process.

20.
FEBS Open Bio ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370305

RESUMO

The domain-swapping mechanism involves the exchange of structural elements within a secondary or supersecondary structure between two (or more) proteins. The present paper proposes to interpret the domain-swapping mechanism using a model that assesses the structure of proteins (and complexes) based on building the structure of a common hydrophobic core in a micelle-like arrangement (a central hydrophobic core with a polar shell in contact with polar water), which has a considerable impact on the stabilisation of the domain structure built by domain swapping. Domains with a hydrophobicity system that is incompatible with the micelle-like structure have also been identified. This incompatibility is the form of structural codes related to biological function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA