Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(1): e1008646, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497393

RESUMO

Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been-so far-no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.


Assuntos
Linguagens de Programação , Biologia de Sistemas/métodos , Algoritmos , Bases de Dados Factuais , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes
2.
Sci Rep ; 11(1): 2696, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514831

RESUMO

Ordinary differential equation (ODE) models are a key tool to understand complex mechanisms in systems biology. These models are studied using various approaches, including stability and bifurcation analysis, but most frequently by numerical simulations. The number of required simulations is often large, e.g., when unknown parameters need to be inferred. This renders efficient and reliable numerical integration methods essential. However, these methods depend on various hyperparameters, which strongly impact the ODE solution. Despite this, and although hundreds of published ODE models are freely available in public databases, a thorough study that quantifies the impact of hyperparameters on the ODE solver in terms of accuracy and computation time is still missing. In this manuscript, we investigate which choices of algorithms and hyperparameters are generally favorable when dealing with ODE models arising from biological processes. To ensure a representative evaluation, we considered 142 published models. Our study provides evidence that most ODEs in computational biology are stiff, and we give guidelines for the choice of algorithms and hyperparameters. We anticipate that our results will help researchers in systems biology to choose appropriate numerical methods when dealing with ODE models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA