Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell Proteomics ; 22(9): 100630, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562535

RESUMO

Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Tapsigargina/farmacologia , Proteômica/métodos
2.
J Biol Chem ; 299(4): 104595, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898579

RESUMO

The integrated stress response (ISR) is an important mechanism by which cells confer protection against environmental stresses. Central to the ISR is a collection of related protein kinases that monitor stress conditions, such as Gcn2 (EIF2AK4) that recognizes nutrient limitations, inducing phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Gcn2 phosphorylation of eIF2 lowers bulk protein synthesis, conserving energy and nutrients, coincident with preferential translation of stress-adaptive gene transcripts, such as that encoding the Atf4 transcriptional regulator. While Gcn2 is central for cell protection to nutrient stress and its depletion in humans leads to pulmonary disorders, Gcn2 can also contribute to the progression of cancers and facilitate neurological disorders during chronic stress. Consequently, specific ATP-competitive inhibitors of Gcn2 protein kinase have been developed. In this study, we report that one such Gcn2 inhibitor, Gcn2iB, can activate Gcn2, and we probe the mechanism by which this activation occurs. Low concentrations of Gcn2iB increase Gcn2 phosphorylation of eIF2 and enhance Atf4 expression and activity. Of importance, Gcn2iB can activate Gcn2 mutants devoid of functional regulatory domains or with certain kinase domain substitutions derived from Gcn2-deficient human patients. Other ATP-competitive inhibitors can also activate Gcn2, although there are differences in their mechanisms of activation. These results provide a cautionary note about the pharmacodynamics of eIF2 kinase inhibitors in therapeutic applications. Compounds designed to be kinase inhibitors that instead directly activate Gcn2, even loss of function variants, may provide tools to alleviate deficiencies in Gcn2 and other regulators of the ISR.


Assuntos
Fator de Iniciação 2 em Eucariotos , Proteínas Serina-Treonina Quinases , Humanos , Trifosfato de Adenosina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Am J Physiol Endocrinol Metab ; 325(5): E624-E637, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792040

RESUMO

Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.


Assuntos
Actomiosina , Temperatura Corporal , Camundongos , Masculino , Feminino , Animais , Actomiosina/metabolismo , Termogênese/genética , Fígado/metabolismo , Temperatura Baixa , Tecido Adiposo Marrom/metabolismo , Aminoácidos/metabolismo , Camundongos Endogâmicos C57BL
4.
PLoS Genet ; 12(12): e1006518, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977682

RESUMO

The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK.


Assuntos
Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Supressoras de Tumor/genética , eIF-2 Quinase/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Dosagem de Genes/genética , Haploinsuficiência/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Mutação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/administração & dosagem , Proteínas Supressoras de Tumor/biossíntese , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/biossíntese
5.
Artigo em Inglês | MEDLINE | ID: mdl-30181373

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that has infected one-third of the population. Upon infection of warm-blooded vertebrates, the replicating form of the parasite (tachyzoite) converts into a latent form (bradyzoite) present in tissue cysts. During immune deficiency, bradyzoites can reconvert into tachyzoites and cause life-threatening toxoplasmosis. We previously reported that translational control through phosphorylation of the α subunit of T. gondii eukaryotic initiation factor 2 (eIF2α) (TgIF2α) is a critical component of the parasite stress response. Diverse stresses can induce the conversion of tachyzoites to bradyzoites, including those disrupting the parasite's endoplasmic reticulum (ER) (ER stress). Toxoplasma possesses four eIF2α kinases, one of which (TgIF2K-A) localizes to the parasite ER analogously to protein kinase R-like endoplasmic reticulum kinase (PERK), the eIF2α kinase that responds to ER stress in mammalian cells. Here, we investigated the effects of a PERK inhibitor (PERKi) on Toxoplasma Our results show that the PERKi GSK2606414 blocks the enzymatic activity of TgIF2K-A and reduces TgIF2α phosphorylation specifically in response to ER stress. PERKi also significantly impeded multiple steps of the tachyzoite lytic cycle and sharply lowered the frequency of bradyzoite differentiation in vitro Pretreatment of host cells with PERKi prior to infection did not affect parasite infectivity, and PERKi still impaired parasite replication in host cells lacking PERK. In mice, PERKi conferred modest protection from a lethal dose of Toxoplasma Our findings represent the first pharmacological evidence supporting TgIF2K-A as an attractive new target for the treatment of toxoplasmosis.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , eIF-2 Quinase/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/parasitologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Parasitos/efeitos dos fármacos , Parasitos/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
6.
Cancer Res ; 84(8): 1286-1302, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266162

RESUMO

TFE3 is a member of the basic helix-loop-helix leucine zipper MiT transcription factor family, and its chimeric proteins are associated with translocation renal cell carcinoma (tRCC). Despite the variety of gene fusions, most TFE3 fusion partner genes are related to spliceosome machinery. Dissecting the function of TFE3 fused to spliceosome machinery factors (TFE3-SF) could direct the development of effective therapies for this lethal disease, which is refractory to standard treatments for kidney cancer. Here, by using a combination of in silico structure prediction, transcriptome profiling, molecular characterization, and high-throughput high-content screening (HTHCS), we interrogated a number of oncogenic mechanisms of TFE3-SF fusions. TFE3-SF fusions drove the transformation of kidney cells and promoted distinct oncogenic phenotypes in a fusion partner-dependent manner, differentially altering the transcriptome and RNA splicing landscape and activating different oncogenic pathways. Inhibiting TFE3-SF dimerization reversed its oncogenic activity and represented a potential target for therapeutic intervention. Screening the FDA-approved drugs library LOPAC and a small-molecule library (Microsource) using HTHCS combined with FRET technology identified compounds that inhibit TFE3-SF dimerization. Hit compounds were validated in 2D and 3D patient-derived xenograft models expressing TFE3-SF. The antihistamine terfenadine decreased cell proliferation and reduced in vivo tumor growth of tRCC. Overall, these results unmask therapeutic strategies to target TFE3-SF dimerization for treating patients with tRCC. SIGNIFICANCE: TFE3-splicing factor fusions possess both transcription and splicing factor functions that remodel the transcriptome and spliceosome and can be targeted with dimerization inhibitors to suppress the growth of translocation renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Fatores de Processamento de RNA/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
7.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895427

RESUMO

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing ß cells renders these cells susceptible to autoimmunity. We show that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reverses the mRNA translation block in stressed human islets and delays the onset of diabetes, reduces islet inflammation, and preserves ß cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice shows reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice shows an increase in the immune checkpoint protein PD-L1 in ß cells. Golgi membrane protein 1, whose levels increase following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacts with and stabilizes PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

8.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889047

RESUMO

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing beta cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved ß cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein PD-L1 in ß cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

9.
J Exp Med ; 204(5): 1025-36, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17470642

RESUMO

IRAK4 is a member of IL-1 receptor (IL-1R)-associated kinase (IRAK) family and has been shown to play an essential role in Toll-like receptor (TLR)-mediated signaling. We recently generated IRAK4 kinase-inactive knock-in mice to examine the role of kinase activity of IRAK4 in TLR-mediated signaling pathways. The IRAK4 kinase-inactive knock-in mice were completely resistant to lipopolysaccharide (LPS)- and CpG-induced shock, due to impaired TLR-mediated induction of proinflammatory cytokines and chemokines. Although inactivation of IRAK4 kinase activity did not affect the levels of TLR/IL-1R-mediated nuclear factor kappaB activation, a reduction of LPS-, R848-, and IL-1-mediated mRNA stability contributed to the reduced cytokine and chemokine production in bone marrow-derived macrophages from IRAK4 kinase-inactive knock-in mice. Both TLR7- and TLR9-mediated type I interferon production was abolished in plasmacytoid dendritic cells isolated from IRAK4 knock-in mice. In addition, influenza virus-induced production of interferons in plasmacytoid DCs was also dependent on IRAK4 kinase activity. Collectively, our results indicate that IRAK4 kinase activity plays a critical role in TLR-dependent immune responses.


Assuntos
Imunidade Inata/imunologia , Quinases Associadas a Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Animais , Northern Blotting , Western Blotting , Citocinas/metabolismo , Primers do DNA , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Vírus da Influenza A/imunologia , Quinases Associadas a Receptores de Interleucina-1/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Immunol ; 186(5): 2871-80, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278342

RESUMO

Exciting discoveries related to IL-1R/TLR signaling in the development of atherosclerosis plaque have triggered intense interest in the molecular mechanisms by which innate immune signaling modulates the onset and development of atherosclerosis. Previous studies have clearly shown the definitive role of proinflammatory cytokine IL-1 in the development of atherosclerosis. Recent studies have provided direct evidence supporting a link between innate immunity and atherogenesis. Although it is still controversial about whether infectious pathogens contribute to cardiovascular diseases, direct genetic evidence indicates the importance of IL-1R/TLR signaling in atherogenesis. In this study, we examined the role of IL-1R-associated kinase 4 (IRAK4) kinase activity in modified low-density lipoprotein (LDL)-mediated signaling using bone marrow-derived macrophage as well as an in vivo model of atherosclerosis. First, we found that the IRAK4 kinase activity was required for modified LDL-induced NF-κB activation and expression of a subset of proinflammatory genes but not for the activation of MAPKs in bone marrow-derived macrophage. IRAK4 kinase-inactive knockin (IRAK4KI) mice were bred onto ApoE(-/-) mice to generate IRAK4KI/ApoE(-/-) mice. Importantly, the aortic sinus lesion formation was impaired in IRAK4KI/ApoE(-/-) mice compared with that in ApoE(-/-) mice. Furthermore, proinflammatory cytokine production was reduced in the aortic sinus region of IRAK4KI/ApoE(-/-) mice compared with that in ApoE(-/-) mice. Taken together, our results indicate that the IRAK4 kinase plays an important role in modified LDL-mediated signaling and the development of atherosclerosis, suggesting that pharmacological inhibition of IRAK4 kinase activity might be a feasible approach in the development of antiatherosclerosis drugs.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/imunologia , Regulação da Expressão Gênica/imunologia , Mediadores da Inflamação/administração & dosagem , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Lipoproteínas LDL/administração & dosagem , NF-kappa B/metabolismo , Acetilação , Animais , Aorta Torácica/enzimologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/patologia , LDL-Colesterol/metabolismo , LDL-Colesterol/fisiologia , Regulação da Expressão Gênica/genética , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/deficiência , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/fisiologia
11.
Antioxid Redox Signal ; 39(4-6): 351-373, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36943285

RESUMO

Significance: Organisms adapt to changing environments by engaging cellular stress response pathways that serve to restore proteostasis and enhance survival. A primary adaptive mechanism is the integrated stress response (ISR), which features phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2). Four eIF2α kinases respond to different stresses, enabling cells to rapidly control translation to optimize management of resources and reprogram gene expression for stress adaptation. Phosphorylation of eIF2 blocks its guanine nucleotide exchange factor, eIF2B, thus lowering the levels of eIF2 bound to GTP that is required to deliver initiator transfer RNA (tRNA) to ribosomes. While bulk messenger RNA (mRNA) translation can be sharply lowered by heightened phosphorylation of eIF2α, there are other gene transcripts whose translation is unchanged or preferentially translated. Among the preferentially translated genes is ATF4, which directs transcription of adaptive genes in the ISR. Recent Advances and Critical Issues: This review focuses on how eIF2α kinases function as first responders of stress, the mechanisms by which eIF2α phosphorylation and other stress signals regulate the exchange activity of eIF2B, and the processes by which the ISR triggers differential mRNA translation. To illustrate the synergy between stress pathways, we describe the mechanisms and functional significance of communication between the ISR and another key regulator of translation, mammalian/mechanistic target of rapamycin complex 1 (mTORC1), during acute and chronic amino acid insufficiency. Finally, we discuss the pathological conditions that stem from aberrant regulation of the ISR, as well as therapeutic strategies targeting the ISR to alleviate disease. Future Directions: Important topics for future ISR research are strategies for modulating this stress pathway in disease conditions and drug development, molecular processes for differential translation and the coordinate regulation of GCN2 and other stress pathways during physiological and pathological conditions. Antioxid. Redox Signal. 39, 351-373.


Assuntos
Fator de Iniciação 2B em Eucariotos , Fator de Iniciação 2 em Eucariotos , Animais , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Regulação da Expressão Gênica , Estresse Fisiológico , Mamíferos/metabolismo
12.
Front Med (Lausanne) ; 10: 1146115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181357

RESUMO

Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.

13.
Clin Cancer Res ; 29(23): 4870-4882, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733811

RESUMO

PURPOSE: Tumors activate protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK, also called EIF2AK3) in response to hypoxia and nutrient deprivation as a stress-mitigation strategy. Here, we tested the hypothesis that inhibiting PERK with HC-5404 enhances the antitumor efficacy of standard-of-care VEGF receptor tyrosine kinase inhibitors (VEGFR-TKI). EXPERIMENTAL DESIGN: HC-5404 was characterized as a potent and selective PERK inhibitor, with favorable in vivo properties. Multiple renal cell carcinoma (RCC) tumor models were then cotreated with both HC-5404 and VEGFR-TKI in vivo, measuring tumor volume across time and evaluating tumor response by protein analysis and IHC. RESULTS: VEGFR-TKI including axitinib, cabozantinib, lenvatinib, and sunitinib induce PERK activation in 786-O RCC xenografts. Cotreatment with HC-5404 inhibited PERK in tumors and significantly increased antitumor effects of VEGFR-TKI across multiple RCC models, resulting in tumor stasis or regression. Analysis of tumor sections revealed that HC-5404 enhanced the antiangiogenic effects of axitinib and lenvatinib by inhibiting both new vasculature and mature tumor blood vessels. Xenografts that progress on axitinib monotherapy remain sensitive to the combination treatment, resulting in ∼20% tumor regression in the combination group. When tested across a panel of 18 RCC patient-derived xenograft (PDX) models, the combination induced greater antitumor effects relative to monotherapies. In this single animal study, nine out of 18 models responded with ≥50% tumor regression from baseline in the combination group. CONCLUSIONS: By disrupting an adaptive stress response evoked by VEGFR-TKI, HC-5404 presents a clinical opportunity to improve the antitumor effects of well-established standard-of-care therapies in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Carcinoma de Células Renais/patologia , Axitinibe/farmacologia , Axitinibe/uso terapêutico , Neoplasias Renais/patologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Clin Cancer Res ; 29(24): 5155-5172, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37982738

RESUMO

PURPOSE: The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN: A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS: HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS: Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Morte Celular , eIF-2 Quinase/genética
15.
Oncogene ; 41(44): 4855-4865, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36182969

RESUMO

Amino acid restriction has recently emerged as a compelling strategy to inhibit tumor growth. Recent work suggests that amino acids can regulate cellular signaling in addition to their role as biosynthetic substrates. Using lymphoid cancer cells as a model, we found that asparagine depletion acutely reduces the expression of c-MYC protein without changing its mRNA expression. Furthermore, asparagine depletion inhibits the translation of MYC mRNA without altering the rate of MYC protein degradation. Of interest, the inhibitory effect on MYC mRNA translation during asparagine depletion is not due to the activation of the general controlled nonderepressible 2 (GCN2) pathway and is not a consequence of the inhibition of global protein synthesis. In addition, both the 5' and 3' untranslated regions (UTRs) of MYC mRNA are not required for this inhibitory effect. Finally, using a MYC-driven mouse B cell lymphoma model, we found that shRNA inhibition of asparagine synthetase (ASNS) or pharmacological inhibition of asparagine production can significantly reduce the MYC protein expression and tumor growth when environmental asparagine becomes limiting. Since MYC is a critical oncogene, our results uncover a molecular connection between MYC mRNA translation and asparagine bioavailability and shed light on a potential to target MYC oncogene post-transcriptionally through asparagine restriction.


Assuntos
Asparagina , Neoplasias , Camundongos , Animais , Asparagina/genética , Asparagina/metabolismo , Disponibilidade Biológica , Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias/genética , Aminoácidos/metabolismo , Regiões 3' não Traduzidas/genética
16.
Elife ; 112022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107759

RESUMO

A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.


Prostate cancer is the fourth most common cancer worldwide, affecting over a million people each year. Existing drug treatments work by blocking the effects or reducing the levels of the hormone testosterone. However, these drug regimens are not always effective, so finding alternative treatments is an important area of research. One option is to target the 'integrated stress response', a pathway that acts as a genetic switch, turning on a group of genes that counteract cellular stress and are essential for the survival of cancer cells. The reason cancer cells are under stress is because they are hungry. They need to make a lot of proteins and other metabolic intermediates to grow and divide, which means they need plenty of amino acids, the building blocks that make up proteins and fuel metabolism. Amino acids enter cells through molecular gates called amino acid transporters, and scientists think the integrated stress response might play a role in this process. One of the integrated stress response components is a protein called General Control Nonderepressible 2, or GCN2 for short. In healthy cells, this protein helps to boost amino acid levels when supplies start to run low. Cordova et al. examined human prostate cancer cells to find out what role GCN2 plays in this cancer. In both lab-grown cells and tissue from patients, GCN2 was active and played a critical role in prostate tumor growth by turning on the genes for amino acid transporters to increase the levels of amino acids entering the cancer cells. Deleting the gene for GCN2, or blocking its effects with an experimental drug, slowed the growth of cultured prostate cancer cells and reduced tumor growth in mice. In these early experiments, Cordova et al. did not notice any toxic side effects to healthy tissues. If GCN2 works in the same way in humans as it does in mice, blocking it might help to control prostate cancer growth. The integrated stress response is also active in other cancer types, so the same logic might apply to different tumors. However, before GCN2 blockers can become treatments, researchers need a more complete understanding of their molecular effects.


Assuntos
Neoplasias da Próstata , eIF-2 Quinase , Animais , Humanos , Masculino , Camundongos , Aminoácidos/metabolismo , Aminoácidos Essenciais , Androgênios , eIF-2 Quinase/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética
17.
J Biol Chem ; 285(22): 16893-911, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20233714

RESUMO

Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.


Assuntos
Aminoácidos/química , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Nitrogênio/química , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Modelos Biológicos , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Transferência/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Serina-Treonina Quinases TOR , Transcrição Gênica , Ácido gama-Aminobutírico/metabolismo
18.
J Immunol ; 183(1): 568-77, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19542468

RESUMO

Both IL-23- and IL-1-mediated signaling pathways play important roles in Th17 cell differentiation, cytokine production, and autoimmune diseases. The IL-1R-associated kinase 4 (IRAK4) is critical for IL-1/TLR signaling. We show here that inactivation of IRAK4 kinase in mice (IRAK4 KI) results in significant resistance to experimental autoimmune encephalomyelitis due to a reduction in infiltrating inflammatory cells into the CNS and reduced Ag-specific CD4(+) T cell-mediated IL-17 production. Adoptive transfer of myelin oligodendrocyte glycoprotein 35-55-specific IRAK4 KI Th17 cells failed to induce experimental autoimmune encephalomyelitis in either wild-type or IRAK4 KI recipient mice, indicating the lack of autoantigen-specific Th17 cell activities in the absence of IRAK4 kinase activity. Furthermore, the absence of IRAK4 kinase activity blocked induction of IL-23R expression, STAT3 activation by IL-23, and Th17 cytokine expression in differentiated Th17 cells. Importantly, blockade of IL-1 signaling by IL-1RA inhibited Th17 differentiation and IL-23-induced cytokine expression in differentiated Th17 cells. The results of these studies demonstrate that IL-1-mediated IRAK4 kinase activity in T cells is essential for induction of IL-23R expression, Th17 differentiation, and autoimmune disease.


Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Interleucina-17/fisiologia , Linfócitos T Auxiliares-Indutores/enzimologia , Linfócitos T Auxiliares-Indutores/imunologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Inibição de Migração Celular/genética , Inibição de Migração Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/prevenção & controle , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Feminino , Técnicas de Introdução de Genes , Glicoproteínas/administração & dosagem , Glicoproteínas/antagonistas & inibidores , Imunidade Inata/genética , Quinases Associadas a Receptores de Interleucina-1/deficiência , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-17/antagonistas & inibidores , Interleucina-17/biossíntese , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Camundongos , Dados de Sequência Molecular , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/antagonistas & inibidores , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T Auxiliares-Indutores/patologia
20.
Biochem Biophys Res Commun ; 367(3): 642-8, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18190779

RESUMO

Inflammation is critically involved in atherogenesis. Signaling from innate immunity receptors TLR2 and 4, IL-1 and IL-18 is mediated by MyD88 and further by interleukin-1 receptor activated kinases (IRAK) 4 and 1. We hypothesized that IRAK4 kinase activity is critical for development of atherosclerosis. IRAK4 kinase-inactive knock-in mouse was crossed with the ApoE-/- mouse. Lesion development was stimulated by carotid ligation. IRAK4 functional deficiency was associated with down-regulation of several pro-inflammatory genes, inhibition of macrophage infiltration, smooth muscle cell and lipid accumulation in vascular lesions. Reduction of plaque size and inhibition of outward remodeling were also observed. Similar effects were observed when ApoE-/- mice subjected to carotid ligation were treated with recombinant IL-1 receptor antagonist thereby validating the model in the relevant pathway context. Thus, IRAK4 functional deficiency inhibits vascular lesion formation in ApoE-/- mice, which further unravels mechanisms of vascular inflammation and identifies IRAK4 as a potential therapeutic target.


Assuntos
Aterosclerose/genética , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Quinases Associadas a Receptores de Interleucina-1/genética , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/patologia , Proteína C-Reativa/análise , Proteína C-Reativa/biossíntese , Proteína C-Reativa/genética , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Cruzamentos Genéticos , Dieta Aterogênica , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/prevenção & controle , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/farmacologia , Interleucina-6/sangue , Ligadura , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Grau de Desobstrução Vascular/efeitos dos fármacos , Grau de Desobstrução Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA