Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(6): e202203118, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36259387

RESUMO

Nitronyl nitroxides are functional building blocks in cutting-edge research fields, such as the design of molecular magnets, the development of redox and photoswitchable molecular systems and the creation of redox-active components for organic and hybrid batteries. The key importance of the nitronyl nitroxide function is to translate molecular-level-optimized structures into nano-scale devices and new technologies. In spite of great importance, efficient and versatile synthetic approaches to these compounds still represent a challenge. Particularly, methods for the direct introduction of a nitronyl nitroxide moiety into aromatic systems possess many limitations. Here, we report gold derivatives of nitronyl nitroxide that can enter Pd(0)-catalysed cross-coupling reactions with various aryl bromides, affording the corresponding functionalized nitronyl nitroxides. Based on the high thermal stability and enhanced reactivity in catalytic transformation, a new reagent is suggested for the synthesis of radical systems via a universal cross-coupling approach.

2.
J Org Chem ; 88(15): 10355-10370, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198196

RESUMO

A special series of nitronyl nitroxides was synthesized: 2-(benzimidazol-2'-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyls mono-, di-, tri-, or tetrafluorinated on the benzene ring. The structure of all paramagnets was unambiguously confirmed by single-crystal X-ray diffraction. It was found that in crystals, the radicals are assembled into chains due to intermolecular H-bonds between the benzimidazole moiety (H-bond donor) and the nitronyl nitroxide group or benzimidazole ring (H-bond acceptor). The magnetic properties of nitronyl nitroxides depend on the type of binding of radicals by H-bonds. The magnetic motif of 4-fluoro-, 5-fluoro-, 4,6-difluoro-, 4,5,6-trifluoro-, 4,5,7-trifluoro-, and 4,5,6,7-tetrafluoro-derivatives, as well as the nonfluorinated compound, consists of ferromagnetic chains (J/kB ≈ 20-40 K) formed by the McConnell type I mechanism. In the 5,6-difluoro- and 4,5-difluoro-derivatives, the distances between the paramagnetic centers are large, as a result of which the exchange interactions are weak. According to cyclic voltammetry, paramagnets are oxidized reversibly, while their reduction is a quasi-reversible electron transfer (EC mechanism); experimental redox potentials of radicals correlate well with the calculated values. Quantum chemical assessment of the acidity of benzimidazolyl-substituted nitronyl nitroxides revealed that the introduction of fluorine atoms into the benzene ring enhances the acidity of the paramagnets by more than 5 orders of magnitude.

3.
Inorg Chem ; 62(12): 4934-4946, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920338

RESUMO

Octahedral cluster complexes of molybdenum and tungsten, [M6X8Y6]n- (M = Mo, W; X, Y = Cl, Br, I), are promising active components in various fields, including biomedicine and solar energy. Cluster complexes draw considerable attention due to their X-ray opacity, red/near-IR luminescence, and ability to convert triplet molecular oxygen to active singlet oxygen under UV and visible irradiation. Among the octahedral cluster complexes of molybdenum and tungsten, compounds with a {W6Br8}4+ core are the least studied. There are only a few examples of compounds with substituted terminal ligands, and their properties are not well understood. Among other things, this is due to more labor-intensive and expensive methods for obtaining the starting compounds in comparison with molybdenum counterparts. In this paper, we describe the synthesis of an octahedral cluster complex, (TBA)2[W6Br14] (TBA+ = tetrabutylammonium), in gram quantities, starting from simple substances─W, Br2, and Bi─in 70% yield. The formation of pentanuclear tungsten cluster complexes was recorded as a byproduct. Compounds with substituted terminal ligands (TBA)2[W6Br8Y6] (Y = NO3, Cl, I) were obtained. We also discuss the instability of (TBA)2[W6Br8(NO3)6] under light exposure, the optical properties of a series of compounds (TBA)2[W6Br8Y6] (Y = Cl, Br, I), and the effect of terminal ligands on the chemical shifts in 183W NMR spectra in dimethyl sulfoxide-d6. The presented approach to the synthesis of one of the main precursors of various bromide cluster complexes on a gram scale can stimulate the study of their properties and development of new functional materials based on them.

4.
Inorg Chem ; 62(48): 19677-19689, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37977192

RESUMO

We report the synthesis and comprehensive characterization of organic-inorganic hybrid salts formed by bis-cationic N,N'-bis(2-(trimethylammonium)ethylene)perylene-3,4,9,10-tetracarboxylic acid bisimide (PTCD2+) and Keggin-type [XW12O40]n- (X = Si, n = 4; X = P, n = 3) polyoxometalates. (PTCD)3[PW12O40]2·3DMSO·2H2O (2) and (PTCD)2[SiW12O40]·DMSO·2H2O (3) were structurally characterized by single crystal X-ray diffraction. The cations in both structures exhibited infinite chainlike arrangements through π-π interactions, contrasting with the previously reported cation-anion stacking observed in naphthalene diimide derivatives. A detailed theoretical study employing topological analysis of the electron density distribution within the quantum theory of atoms in molecules approach provided further insights into this structural dualism. Atomic force microscopy analyses revealed the formation of self-assembled supramolecular structures on graphite from molecular monolayers (3 nm of thick) to submicrometer aggregates for 2. Hyperspectral Raman spectroscopy imaging revealed that such heterostructures are likely formed by an enhanced π-π interactions. Both complexes demonstrated interesting electrochemical behavior, photoluminescence and X-ray-induced luminescence. Electron spin resonance analysis confirmed charge separation in both compounds, with enhanced efficiency observed in compound 2. Our findings of these perylene-based organic-inorganic hybrid salts offer the potential for their application in optoelectronic devices and functional materials.

5.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108728

RESUMO

We demonstrate that a series of perfluorinated para-oligophenylenes C6F5-(C6F4)n-C6F5 (n = 1-3) produce exciplexes with N,N-dimethylaniline (DMA) in degassed X-irradiated n-dodecane solutions. The optical characterization of the compounds shows that their short fluorescence lifetimes (ca. 1.2 ns) and UV-Vis absorption spectra, overlapping with the spectrum of DMA with molar absorption coefficients of 2.7-4.6 × 104 M-1cm-1, preclude the standard photochemical exciplex formation pathway via selective optical generation of the local excited state of the donor and its bulk quenching by the acceptor. However, under X-rays, the efficient assembly of such exciplexes proceeds via the recombination of radical ion pairs, which delivers the two partners close to each other and ensures a sufficient energy deposition. The exciplex emission is completely quenched by the equilibration of the solution with air, providing a lower bound of exciplex emission lifetime of ca. 200 ns. The recombination nature of the exciplexes is confirmed by the magnetic field sensitivity of the exciplex emission band inherited from the magnetic field sensitivity from the recombination of spin-correlated radical ion pairs. Exciplex formation in such systems is further supported by DFT calculations. These first exciplexes from fully fluorinated compounds show the largest known red shift of the exciplex emission from the local emission band, suggesting the potential of perfluoro compounds for optimizing optical emitters.


Assuntos
Alcanos , Compostos de Anilina , Raios X , Compostos de Anilina/química , Alcanos/química , Recombinação Genética
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499535

RESUMO

Description of interacting spin systems relies on understanding the spectral properties of the corresponding spin Hamiltonians. However, the eigenvalue problems arising here lead to algebraic problems too complex to be analytically tractable. This is already the case for the simplest nontrivial (Kmax−1) block for an isotropic hyperfine Hamiltonian for a radical with spin-12 nuclei, where n nuclei produce an n-th order algebraic equation with n independent parameters. Systems described by such blocks are now physically realizable, e.g., as radicals or radical pairs with polarized nuclear spins, appear as closed subensembles in more general radical settings, and have numerous counterparts in related central spin problems. We provide a simple geometrization of energy levels in this case: given n spin-12 nuclei with arbitrary positive couplings ai, take an n-dimensional hyper-ellipsoid with semiaxes ai, stretch it by a factor of n+1 along the spatial diagonal (1, 1, …, 1), read off the semiaxes of thus produced new hyper-ellipsoid qi, augment the set {qi} with q0=0, and obtain the sought n+1 energies as Ek=−12qk2+14∑iai. This procedure provides a way of seeing things that can only be solved numerically, giving a useful tool to gain insights that complement the numeric simulations usually inevitable here, and shows an intriguing connection to discrete Fourier transform and spectral properties of standard graphs.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Análise de Fourier
7.
J Am Chem Soc ; 143(21): 8164-8176, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019759

RESUMO

Thermally resistant air-stable organic triradicals with a quartet ground state and a large energy gap between spin states are still unique compounds. In this work, we succeeded to design and prepare the first highly stable triradical, consisting of oxoverdazyl and nitronyl nitroxide radical fragments, with a quartet ground state. The triradical and its diradical precursor were synthesized via a palladium-catalyzed cross-coupling reaction of diiodoverdazyl with nitronyl nitroxide-2-ide gold(I) complex. Both paramagnetic compounds were fully characterized by single-crystal X-ray diffraction analysis, superconducting quantum interference device magnetometry, EPR spectroscopy in various matrices, and cyclic voltammetry. In the diradical, the verdazyl and nitronyl nitroxide centers demonstrated full reversibility of redox process, while for the triradical, the electrochemical reduction and oxidation proceed at practically the same redox potentials, but become quasi-reversible. A series of high-level CASSCF/NEVPT2 calculations was performed to predict inter- and intramolecular exchange interactions in crystals of di- and triradicals and to establish their magnetic motifs. Based on the predicted magnetic motifs, the temperature dependences of the magnetic susceptibility were analyzed, and the singlet-triplet (135 ± 10 cm-1) and doublet-quartet (17 ± 2 and 152 ± 19 cm-1) splitting was found to be moderate. Unique high stability of synthesized verdazyl-nitronylnitroxide triradical opens new perspectives for further functionalization and design of high-spin systems with four or more spins.

8.
Phys Chem Chem Phys ; 23(31): 16698-16706, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338250

RESUMO

The kinetics of electron transfer (ET) from tyrosine (Tyr) to short-lived histidine (His) radicals in peptides of different structures was monitored using time-resolved chemically induced dynamic nuclear polarization (CIDNP) to follow the reduction of the His radicals using NMR detection of the diamagnetic hyperpolarized reaction products. In aqueous solution over a wide pH range, His radicals were generated in situ in the photo-induced reaction with the photosensitizer, 3,3',4,4'-tetracarboxy benzophenone. Model simulations of the CIDNP kinetics provided pH-dependent rate constants of intra- and intermolecular ET, and the pH dependencies of the reaction under study were interpreted in terms of protonation states of the reactants and the product, His with either protonated or neutral imidazole. In some cases, an increase of pKa of imidazole in the presence of the short-lived radical center at a nearby Tyr residue was revealed. Interpretation of the obtained pH dependencies made is possible to quantify the degree of paramagnetic shift of the acidity constant of the imidazole of the His residue in the peptides with a Tyr residue in its paramagnetic state, and to correlate this degree with the intramolecular ET rate constant - a higher intramolecular ET rate constant corresponded to a greater acidity constant shift.


Assuntos
Histidina/química , Peptídeos/química , Tirosina/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução
9.
J Phys Chem A ; 124(12): 2416-2426, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32130857

RESUMO

A series of stable and genuinely organic open-shell systems, π-conjugated phenoxyl-nitroxide free radicals (hybrid phenoxyl-nitroxide radicals), have been synthesized and their magnetic properties in the crystalline state investigated, revealing their usefulness as new building blocks for molecular magnetic materials. The salient electronic structure of the hybrid phenoxyl-nitroxide radicals is extended π-spin delocalization from the nitroxide moiety, mediating the localization effect intrinsic to nitroxide radicals. Five representative hybrid radicals containing an aliphatic, aromatic, and heteroaromatic substituent in the side part of the compact hybrid radical centers were synthesized, and their molecular/crystal structures in the crystalline state were determined by X-ray diffraction analyses. CW X-band ESR, 1H-ENDOR spectroscopy, and DFT calculations for the hybrid radicals confirmed that an unpaired spin delocalizes over the whole molecular frame including the nonconjugated fragments, suggesting the possibility of tuning their electronic properties through substituent effects in the crystalline state. Significant influence of the phenoxyl moiety on the electronic structure was analyzed in terms of the g-tensor calculations. The SQUID magnetization measurements revealed that the nitroxides bearing alkyl or aromatic substituents behave as 3D Curie-Weiss paramagnets with weak antiferromagnetic (AFM) (Θ = -1 to -2.6 K) or ferromagnetic (FM) (Θ = +0.33 K) spin-spin exchange interactions. On the other hand, heteroaromatically substituted hybrid phenoxyl-nitroxide showed significant AFM interactions with J/kB = -25.6 K. The analysis of the bulk magnetic properties based on the crystallographic data and DFT calculations revealed competition between the intermolecular AFM and FM interactions which originate from the C-O(phenoxyl)···Me(nitroxide) or (N)O-C(arom) infinite 1D head-to-tail chains and the C(arom)-C(arom) head-over-tail dimers forming 3D networks in their crystal lattices.

10.
Molecules ; 25(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224961

RESUMO

In contrast to diradicals connected by alternant hydrocarbons, only a few studies have addressed diradicals connected by nonalternant hydrocarbons and their heteroatom derivatives. Here, the synthesis, structure, and magnetic properties of pyrrole-2,5-diyl-linked bis(nitronyl nitroxide) and bis(iminonitroxide) diradicals are described. The diradicals show characteristic electron spin resonance spectra in dilute glassy solutions, from which conclusions about the presence of distinct conformations, their symmetry, and interspin distance were made. X-ray diffraction analysis of the diradicals revealed that paramagnetic moieties lie in the plane of the pyrrole ring, because of the formation of an intramolecular hydrogen bond, ONO…HN, with O…H distances of 2.15-2.23 Å. The N-O groups participating in the formation of H-bonds have greater bond lengths (~1.29 Å) as compared with nonparticipating groups (~1.27 Å). The nitronyl nitroxide and iminonitroxide diradicals showed an intramolecular antiferromagnetic interaction, with J = -77.3 and -22.2 cm-1, respectively (H = -2JS1S2).


Assuntos
Óxidos de Nitrogênio/química , Algoritmos , Técnicas de Química Sintética , Espectroscopia de Ressonância de Spin Eletrônica , Fenômenos Magnéticos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Óxidos de Nitrogênio/síntese química , Pirróis/química
11.
J Chem Phys ; 151(18): 184112, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731845

RESUMO

Basic algebraic arguments demonstrate that the probability of radical pair recombination in low field for an arbitrary pair with Hamiltonian confined to Zeeman and isotropic hyperfine interactions contains two additive contributions linear with applied field with equal, but opposite in sign, proportionality factors. Their weights are determined by the probability of having all nuclear spins along the field in the initial electron-singlet state of the pair, and in the case of equilibrium with respect to nuclear spins, the two contributions completely compensate the field dependences of each other, producing an additive term in the singlet yield with zero derivative. However, if the nuclear set is polarized, a linear skew proportional to polarization appears, introducing anisotropy in the intrinsically spherically symmetric system. The key element in this derivation is guaranteed nondegeneracy of the eigenvalues of the "penultimate" (Mmax - 1) block of the Hamiltonian for a radical with any number of distinct spin-1/2 nuclei in zero field, which leads to guaranteed applicability of the first-order nondegenerate perturbation theory with nonvanishing linear in field admixture of states, persisting all the way into the final expression for singlet yield for a pair with an arbitrary isotropic hyperfine structure. We argue that this behavior of the field dependence of recombination yield is representative of a radical pair of an arbitrarily complex hyperfine structure; this may be a possible mechanism for anisotropic response ("chemical compass") for an isotropic radical pair based system with isotropic-only internal interactions and anisotropy introduced via the initial state of nuclei, while such an approach may complement the usually needed numerical simulations.

12.
J Phys Chem A ; 122(5): 1235-1252, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29283574

RESUMO

Customizable and technology-friendly functional materials are one of the mainstays of emerging organic electronics and optoelectronics. We show that recombination exciplexes of simple substituted diphenylacetylenes with tertiary amines can be a convenient source of tunable deep-blue emission with possible applications in organic electroluminescent systems. The optically inaccessible exciplexes were produced via recombination of radiation-generated radical ion pairs in alkane solution, which mimics charge transport and recombination in the active layer of practical organic light-emitting diodes in a simple solution-based experiment. Despite varying and rather poor intrinsic emission properties, diphenylacetylene and its prototypical methoxy (donor) or trifluoromethyl (acceptor) monosubstituted derivatives readily form recombination exciplexes with N,N-dimethylaniline and other tertiary amines that produce emission with maxima ranging from 385 to 435 nm. The position of emission band maximum linearly correlates with readily calculated gas-phase electron affinity of the corresponding diphenylacetylene, which can be used for fast computational prescreening of the candidate molecules, and various substituted diphenylacetylenes can be synthesized via relatively simple and universal cross-coupling reactions of Sonogashira and Castro. Together, the simple solution-based experiment, computationally cheap prescreening method, and universal synthetic strategy may open a very broad and chemically convenient class of compounds to obtain OLEDs and OLED-based multifunctional devices with tunable emission spectrum and high conversion efficiency that has yet not been seriously considered for these purposes.

13.
J Org Chem ; 82(8): 4179-4185, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28358985

RESUMO

A 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (1) lithium derivative was found to react with perfluorobenzonitrile (2) substituting its para-fluorine atom to form 2-(4-cyanotetrafluorophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (3), a new nitronyl nitroxide containing a multifunctional framework of strong electron-withdrawing nature. This result shows the possibility of obtaining multifunctional nitronyl nitroxides via the interaction of paramagnetic lithium derivatives as C-nucleophiles with polyfluoroarenes activated for nucleophilic substitution. The reaction regioselectivity is supported by the data of quantum-chemical calculations, which also show that the reaction follows a concerted pathway without formation of an intermediate. Reduction of nitronyl nitroxide 3 in system NaNO2-AcOH yielded corresponding iminonitroxide 4. Characterization of persistent radicals 3 and 4 obtained by the SNF synthetic strategy includes X-ray crystal structures, electron spin resonance data, and static magnetic-susceptibility measurements. X-ray diffraction analysis of both nitronyl nitroxide and iminonitroxide revealed a complete match of the parameters of their crystal lattices.

14.
Photochem Photobiol Sci ; 15(6): 767-78, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27142284

RESUMO

X-irradiation of nonpolar solutions likely provides a possibility to create exciplexes for any donor-acceptor pair that would energetically and sterically allow this. Thorough study and characterization of X-radiation generated exciplexes usually cannot be carried out with conventional methods because of the complex and non-exponential formation and decay dynamics of these species. In this paper, we present a simple and universal experimental approach for the estimation of fluorescence lifetimes (τF) of X-radiation generated exciplexes. The suggested procedure is based on the comparison of quenching of the exciplex emission band and the emission band from a standard luminophore with a known excited state lifetime by dissolved oxygen. Using this approach we report the τF values for two systems with optically inaccessible exciplexes, diphenylacetylene-N,N-dimethylaniline (DMA) and p-terphenyl-DMA, and for two typical exciplex forming systems, naphthalene-DMA and anthracene-DMA. All the found τF values for the X-radiation generated exciplexes lie in the range of 50-70 ns. The accuracy of this approach was checked by time-resolved measurements under X- or near-UV irradiation for those pairs, whose properties make this feasible. The proposed method gives a possibility to avoid a complex numerical evaluation of the non-exponential kinetics of recombination luminescence, and can be used to estimate the characteristic τF values for luminophores and excited complexes formed under X-radiation.


Assuntos
Compostos de Anilina/química , Fluorescência , Raios X , Acetileno/análogos & derivados , Acetileno/química , Alcanos/química , Antracenos/química , Cinética , Naftalenos/química , Oxigênio/química , Processos Fotoquímicos , Soluções/química , Soluções/efeitos da radiação , Compostos de Terfenil/química
15.
Chemistry ; 20(10): 2793-803, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24677167

RESUMO

Spin-labelled compounds are widely used in chemistry, physics, biology and the materials sciences but the synthesis of stable high-spin organic molecules is still a challenge. We succeeded in synthesising heteroatom analogues of the 1,1,2,3,3-pentamethylenepropane (PMP) diradicals with two nitronyl nitroxide (DR1) and with two iminonitroxide (DR2) fragments linked through the C(sp2) atom of the nitrone group. According to magnetic susceptibility measurements, EPR data and ab initio calculations at the (8,6)CASSCF and (8,6)NEVPT2 levels, DR1 and DR2 have singlet ground states. The singlet­triplet energy splitting (2J) is low (J/k=−7.4 for DR1 and −6.0 K for DR2), which comes from the disjoint nature of these diradicals. The reaction of [Cu(hfac)2] with DR1 gives rise to different heterospin complexes in which the diradical acts as a rigid ligand, retaining its initial conformation. For the [{Cu(hfac)2}2(DR1)(H2O)] complex, sufficiently strong ferromagnetic interactions (J1/k=42.7 and J2/k=14.1 K) between two coordinating CuII ions and DR1 were revealed. In [{Cu(hfac)2}2(DR1)(H2O)][Cu(hfac)2(H2O)], the very strong and antiferromagnetic (J/k=−416.1 K) exchange interaction between one of the coordinating CuII ions and DR1 is caused by the very short equatorial CuO bond length (1.962 Å).

16.
Photochem Photobiol Sci ; 13(8): 1169-79, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24926863

RESUMO

X-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively. The exciplex emission band is sensitive to an external magnetic field and exerts a very large observed magnetic field effect of up to 20%, the maximum possible value under the conditions of the described experiment.


Assuntos
Alcanos/química , Alcanos/efeitos da radiação , Compostos de Anilina/química , Compostos de Anilina/efeitos da radiação , Fluorescência , Radicais Livres/química , Radicais Livres/efeitos da radiação , Luminescência , Campos Magnéticos , Estrutura Molecular , Naftalenos/química , Naftalenos/efeitos da radiação , Processos Fotoquímicos , Soluções , Espectrometria por Raios X , Raios X
17.
Luminescence ; 29(7): 703-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24729569

RESUMO

The luminescent system of higher luminous fungi is not fully understood and the enzyme/substrate pair of the light emission reaction has not been isolated. It was suggested that luminescence of fungi involves oxidase-type enzymes, and reactive oxygen species are important for fungal light production. Generation of reactive oxygen species can be stimulated by ionizing irradiation, which has not been studied for luminous fungi. We report the effect of X-irradiation on the luminescence of fungus Neonothopanus nambi. Experiments were performed with mycelium on a home-built setup based on an X-ray tube and monochromator/photomultiplier tube. Application of X-rays does not change the emission spectrum, but after approximately 20 min of continuous irradiation, light production from unsupported mycelium starts growing and increases up to approximately five times. After peaking, its level decreases irrespective of the presence of X-irradiation. After staying at a certain level, light production collapses to zero, which is not related to the drying of the mycelium or thermal impact of radiation. The observed shape of kinetics is characteristic of a multistage and/or chain reaction. The time profile of light production must reflect the current levels of radicals present in the system and/or the activity of enzyme complexes involved in light production.


Assuntos
Agaricales/química , Luminescência , Micélio/química , Agaricales/metabolismo , Micélio/metabolismo , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo
18.
Dalton Trans ; 52(41): 15132, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830437

RESUMO

Correction for 'Optical property trends in a family of {Mo6I8} aquahydroxo complexes' by Margarita V. Marchuk et al., Dalton Trans., 2021, 50, 8794-8802, https://doi.org/10.1039/D1DT01293B.

19.
Chem Commun (Camb) ; 59(20): 2923-2926, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799209

RESUMO

We introduce here a new subclass of copper(I) hybrid emitters simultaneously containing [CuxIy]z- anions and Cu+ cations, separated in space by a Janus head ligand. When UV-irradiated at 298 K, these unique "Two-In-One" hybrids exhibit a short-lived green TADF with near-unity quantum yield and a strong solvatochromic effect. Moreover, they manifest a strong radioluminescence upon X-ray irradiation. These findings open up new possibilities for the design of highly performing TADF materials.

20.
Dalton Trans ; 52(13): 4017-4027, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36880169

RESUMO

Exploiting 2-(alkylsulfonyl)pyridines as 1,3-N,S-ligands, herein we have constructed 1D CuI-based coordination polymers (CPs) bearing unprecedented (CuI)n chains and possessing remarkable photophysical properties. At room temperature, these CPs show efficient TADF, phosphorescence or dual emission in the deep-blue to red range with outstandingly short decay times of 0.4-2.0 µs and good quantum performance. Owing to great structural diversity, the CPs demonstrate a variety of emissive mechanisms, spanning from TADF of 1(M + X)LCT type to 3CC and 3(M + X)LCT phosphorescence. Moreover, the designed compounds emit strong X-ray radioluminescence with the quantum efficiency of up to an impressive 55% relative to all-inorganic BGO scintillators. The presented findings push the boundaries in designing TADF and triplet emitters with very short decay times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA