Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
RNA ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981655

RESUMO

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge of a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.

2.
Genome Res ; 31(11): 2058-2068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34667116

RESUMO

Defense against genome invaders universally relies on RNA-guided immunity. Prokaryotic CRISPR-Cas and eukaryotic RNA interference pathways recognize targets by complementary base-pairing, which places the sequences of their guide RNAs at the center of self/nonself discrimination. Here, we explore the sequence space of PIWI-interacting RNAs (piRNAs), the genome defense of animals, and establish functional priority among individual sequences. Our results reveal that only the topmost abundant piRNAs are commonly present in every cell, whereas rare sequences generate cell-to-cell diversity in flies and mice. We identify a skewed distribution of sequence abundance as a hallmark of piRNA populations and show that quantitative differences of more than a 1000-fold are established by conserved mechanisms of biogenesis. Finally, our genomics analyses and direct reporter assays reveal that abundance determines function in piRNA-guided genome defense. Taken together, we identify an effective sequence space and untangle two classes of piRNAs that differ in complexity and function. The first class represents the topmost abundant sequences and drives silencing of genomic parasites. The second class sparsely covers an enormous sequence space. These rare piRNAs cannot function in every cell, every individual, or every generation but create diversity with potential for adaptation in the ongoing arms race with genome invaders.


Assuntos
RNA Guia de Cinetoplastídeos , Animais , Camundongos , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
Nucleic Acids Res ; 50(10): 5834-5849, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580054

RESUMO

T-box riboswitches (T-boxes) are essential RNA regulatory elements with a remarkable structural diversity, especially among bacterial pathogens. In staphylococci, all glyS T-boxes synchronize glycine supply during synthesis of nascent polypeptides and cell wall formation and are characterized by a conserved and unique insertion in their antiterminator/terminator domain, termed stem Sa. Interestingly, in Staphylococcus aureus the stem Sa can accommodate binding of specific antibiotics, which in turn induce robust and diverse effects on T-box-mediated transcription. In the present study, domain swap mutagenesis and probing analysis were performed to decipher the role of stem Sa. Deletion of stem Sa significantly reduces both the S. aureus glyS T-box-mediated transcription readthrough levels and the ability to discriminate among tRNAGly isoacceptors, both in vitro and in vivo. Moreover, the deletion inverted the previously reported stimulatory effects of specific antibiotics. Interestingly, stem Sa insertion in the terminator/antiterminator domain of Geobacillus kaustophilus glyS T-box, which lacks this domain, resulted in elevated transcription in the presence of tigecycline and facilitated discrimination among proteinogenic and nonproteinogenic tRNAGly isoacceptors. Overall, stem Sa represents a lineage-specific structural feature required for efficient staphylococcal glyS T-box-mediated transcription and it could serve as a species-selective druggable target through its ability to modulate antibiotic binding.


Assuntos
Riboswitch , Antibacterianos/farmacologia , RNA , RNA de Transferência de Glicina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768895

RESUMO

The La protein (lupus antigen) is a ubiquitous RNA-binding protein found in all human cells. It is mainly localized in the nucleus, associates with all RNA polymerase III (Pol III) transcripts, as the first factor they interact with, and modulates subsequent processing events. Export of La to the cytoplasm has been reported to stimulate the decoding of specific cellular and viral mRNAs through IRES-dependent (Internal ribosome entry site) binding and translation. Using NMR (Nuclear Magnetic Resonance) spectroscopy, we provide atomic-level-resolution structural insights on the dynamical properties of human La (hLa) protein in solution. Moreover, using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we provide evidence about the role and ligand specificity of the C-terminal domain of the La protein (RRM2 and C-terminal region) that could mediate the recognition of HCV-IRES.


Assuntos
Hepatite C , Biossíntese de Proteínas , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/metabolismo , Sítios Internos de Entrada Ribossomal , Espectroscopia de Ressonância Magnética , Ribonucleoproteínas/genética , Ribossomos/metabolismo , RNA Viral/metabolismo
5.
Pharmacogenomics J ; 22(4): 211-222, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35725816

RESUMO

The heterogeneity of psychiatric disorders and the lack of reliable biomarkers for prediction and treatments follow-up pose difficulties towards recognition and understanding of the molecular basis of psychiatric diseases. However, several studies based on NGS approaches have shown that miRNAs could regulate gene expression during onset and disease progression and could serve as potential diagnostic and pharmacogenomics biomarkers during treatment. We provide herein a detailed overview of circulating miRNAs and their expression profiles as biomarkers in schizophrenia, bipolar disorder and major depressive disorder and their role in response to specific treatments. Bioinformatics analysis of miR-34a, miR-106, miR-134 and miR-132, which are common among SZ, BD and MDD patients, showed brain enrichment and involvement in the modulation of critical signaling pathways, which are often deregulated in psychiatric disorders. We propose that specific miRNAs support accurate diagnosis and effective precision treatment of psychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Transtornos Mentais , MicroRNAs , Biomarcadores , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , MicroRNAs/genética , Farmacogenética
6.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806029

RESUMO

The hemoglobin switch from fetal (HbF) to adult (HbA) has been studied intensively as an essential model for gene expression regulation, but also as a beneficial therapeutic approach for ß-hemoglobinopathies, towards the objective of reactivating HbF. The transcription factor LRF (Leukemia/lymphoma-related), encoded from the ZBTB7A gene has been implicated in fetal hemoglobin silencing, though has a wide range of functions that have not been fully clarified. We thus established the LRF/ZBTB7A-overexpressing and ZBTB7A-knockdown K562 (human erythroleukemia cell line) clones to assess fetal vs. adult hemoglobin production pre- and post-induction. Transgenic K562 clones were further developed and studied under the influence of epigenetic chromatin regulators, such as DNA methyl transferase 3 (DNMT3) and Histone Deacetylase 1 (HDAC1), to evaluate LRF's potential disturbance upon the aberrant epigenetic background and provide valuable information of the preferable epigenetic frame, in which LRF unfolds its action on the ß-type globin's expression. The ChIP-seq analysis demonstrated that LRF binds to γ-globin genes (HBG2/1) and apparently associates BCL11A for their silencing, but also during erythropoiesis induction, LRF binds the BGLT3 gene, promoting BGLT3-lncRNA production through the γ-δ intergenic region of ß-type globin's locus, triggering the transcriptional events from γ- to ß-globin switch. Our findings are supported by an up-to-date looping model, which highlights chromatin alterations during erythropoiesis at late stages of gestation, to establish an "open" chromatin conformation across the γ-δ intergenic region and accomplish ß-globin expression and hemoglobin switch.


Assuntos
RNA Longo não Codificante , Fatores de Transcrição , Adulto , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , DNA Intergênico/genética , DNA Intergênico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina A/genética , Hemoglobina A/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163222

RESUMO

The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and the samples. Herein, we summarize the existing studies that report several miRNAs as important diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the correlation of specific miRNA expression profiles with the expression signatures of known gene targets. Combining network analytics with machine learning, we developed specific non-linear classification models that could successfully predict CM recurrence and metastasis, based on two newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets (i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall, our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine learning, which facilitates dimensionality reduction and optimization of the prediction models. Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards precision treatment.


Assuntos
Melanoma/genética , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Melanoma/patologia , Metástase Neoplásica/genética , Estadiamento de Neoplasias , Prognóstico , Recidiva , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma/genética , Melanoma Maligno Cutâneo
8.
Pharmacogenomics J ; 21(6): 638-648, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34145402

RESUMO

Retinoids are widely used in diseases spanning from dermatological lesions to cancer, but exhibit severe adverse effects. A novel all-trans-Retinoic Acid (atRA)-spermine conjugate (termed RASP) has shown previously optimal in vitro and in vivo anti-inflammatory and anticancer efficacy, with undetectable teratogenic and toxic side-effects. To get insights, we treated HaCaT cells which resemble human epidermis with IC50 concentration of RASP and analyzed their miRNA expression profile. Gene ontology analysis of their predicted targets indicated dynamic networks involved in cell proliferation, signal transduction and apoptosis. Furthermore, DNA microarrays analysis verified that RASP affects the expression of the same categories of genes. A protein-protein interaction map produced using the most significant common genes, revealed hub genes of nodal functions. We conclude that RASP is a synthetic retinoid derivative with improved properties, which possess the beneficial effects of retinoids without exhibiting side-effects and with potential beneficial effects against skin diseases including skin cancer.


Assuntos
Queratinócitos/efeitos dos fármacos , MicroRNAs/metabolismo , Espermina/análogos & derivados , Transcriptoma , Tretinoína/análogos & derivados , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Relação Dose-Resposta a Droga , Redes Reguladoras de Genes , Células HaCaT , Humanos , Concentração Inibidora 50 , Queratinócitos/metabolismo , Queratinócitos/patologia , MicroRNAs/genética , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espermina/farmacologia , Espermina/toxicidade , Tretinoína/farmacologia , Tretinoína/toxicidade
9.
Nucleic Acids Res ; 47(19): 9998-10009, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31504783

RESUMO

We provide the first high-throughput analysis of the properties and functional role of Low Complexity Regions (LCRs) in more than 1500 prokaryotic and phage proteomes. We observe that, contrary to a widespread belief based on older and sparse data, LCRs actually have a significant, persistent and highly conserved presence and role in many and diverse prokaryotes. Their specific amino acid content is linked to proteins with certain molecular functions, such as the binding of RNA, DNA, metal-ions and polysaccharides. In addition, LCRs have been repeatedly identified in very ancient, and usually highly expressed proteins of the translation machinery. At last, based on the amino acid content enriched in certain categories, we have developed a neural network web server to identify LCRs and accurately predict whether they can bind nucleic acids, metal-ions or are involved in chaperone functions. An evaluation of the tool showed that it is highly accurate for eukaryotic proteins as well.


Assuntos
Evolução Molecular , Ensaios de Triagem em Larga Escala/métodos , Proteoma/genética , RNA/genética , Aminoácidos/genética , DNA/genética , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Domínios Proteicos/genética , Proteínas/genética , RNA/química , Alinhamento de Sequência
10.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638646

RESUMO

Ribonuclease P (RNase P) is an important ribonucleoprotein (RNP), responsible for the maturation of the 5' end of precursor tRNAs (pre-tRNAs). In all organisms, the cleavage activity of a single phosphodiester bond adjacent to the first nucleotide of the acceptor stem is indispensable for cell viability and lies within an essential catalytic RNA subunit. Although RNase P is a ribozyme, its kinetic efficiency in vivo, as well as its structural variability and complexity throughout evolution, requires the presence of one protein subunit in bacteria to several protein partners in archaea and eukaryotes. Moreover, the existence of protein-only RNase P (PRORP) enzymes in several organisms and organelles suggests a more complex evolutionary timeline than previously thought. Recent detailed structures of bacterial, archaeal, human and mitochondrial RNase P complexes suggest that, although apparently dissimilar enzymes, they all recognize pre-tRNAs through conserved interactions. Interestingly, individual protein subunits of the human nuclear and mitochondrial holoenzymes have additional functions and contribute to a dynamic network of elaborate interactions and cellular processes. Herein, we summarize the role of each RNase P subunit with a focus on the human nuclear RNP and its putative role in flawless gene expression in light of recent structural studies.


Assuntos
Domínio Catalítico/fisiologia , Subunidades Proteicas/metabolismo , Ribonuclease P/metabolismo , Animais , Humanos , Cinética , Precursores de RNA/metabolismo , RNA Catalítico/metabolismo
11.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672357

RESUMO

KRASG12C is among the most common oncogenic mutations in lung adenocarcinoma and a promising target for treatment by small-molecule inhibitors. KRAS oncogenic signaling is responsible for modulation of tumor microenvironment, with translation factors being among the most prominent deregulated targets. In the present study, we used TALENs to edit EGFRWT CL1-5 and A549 cells for integration of a Tet-inducible KRASG12C expression system. Subsequent analysis of both cell lines showed that cap-dependent translation was impaired in CL1-5 cells via involvement of mTORC2 and NF-κB. In contrast, in A549 cells, which additionally harbor the KRASG12S mutation, cap-dependent translation was favored via recruitment of mTORC1, c-MYC and the positive regulation of eIF4F complex. Downregulation of eIF1, eIF5 and eIF5B in the same cell line suggested a stringency loss of start codon selection during scanning of mRNAs. Puromycin staining and polysome profile analysis validated the enhanced translation rates in A549 cells and the impaired cap-dependent translation in CL1-5 cells. Interestingly, elevated translation rates were restored in CL1-5 cells after prolonged induction of KRASG12C through an mTORC1/p70S6K-independent way. Collectively, our results suggest that KRASG12C signaling differentially affects the regulation of the translational machinery. These differences could provide additional insights and facilitate current efforts to effectively target KRAS.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Códon de Iniciação , Receptores ErbB/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Capuzes de RNA/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
12.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419375

RESUMO

Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.


Assuntos
Nucléolo Celular/genética , RNA Ribossômico/biossíntese , RNA não Traduzido/genética , Ribossomos/genética , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética
13.
Nucleic Acids Res ; 45(17): 10242-10258, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973457

RESUMO

Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators.


Assuntos
Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Riboswitch/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Glicina/metabolismo , Glicina-tRNA Ligase/biossíntese , Glicina-tRNA Ligase/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Filogenia , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Glicina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas com Domínio T/metabolismo
14.
Nucleic Acids Res ; 45(3): 1059-1068, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180287

RESUMO

Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent from many genomes. In the course of this analysis, highly conserved protein motifs and domains within each of the AARS loci were identified and used to build a web-based computational tool for the genome-wide detection of AARS coding sequences. This is based on hidden Markov models (HMMs) and is available together with a cognate database that may be used for specific analyses. The bioinformatics tools that we have developed may also help to identify new antibiotic agents and targets using these essential enzymes. These tools also may help to identify organisms with alternative pathways that are involved in maintaining the fidelity of the genetic code.


Assuntos
Aminoacil-tRNA Sintetases/genética , Evolução Molecular , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/classificação , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/genética , Biologia Computacional , Sequência Conservada , Bases de Dados de Proteínas , Cadeias de Markov , Filogenia , Domínios Proteicos
15.
Nucleic Acids Res ; 44(18): 8908-8920, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27515512

RESUMO

PNLDC1 is a homologue of poly(A) specific ribonuclease (PARN), a known deadenylase with additional role in processing of non-coding RNAs. Both enzymes were reported recently to participate in piRNA biogenesis in silkworm and C. elegans, respectively. To get insights on the role of mammalian PNLDC1, we characterized the human and mouse enzymes. PNLDC1 shows limited conservation compared to PARN and represents an evolutionary related but distinct group of enzymes. It is expressed specifically in mouse embryonic stem cells, human and mouse testes and during early mouse embryo development, while it fades during differentiation. Its expression in differentiated cells, is suppressed through methylation of its promoter by the de novo methyltransferase DNMT3B. Both enzymes are localized mainly in the ER and exhibit in vitro specificity restricted solely to 3' RNA or DNA polyadenylates. Knockdown of Pnldc1 in mESCs and subsequent NGS analysis showed that although the expression of the remaining deadenylases remains unaffected, it affects genes involved mainly in reprogramming, cell cycle and translational regulation. Mammalian PNLDC1 is a novel deadenylase expressed specifically in cell types which share regulatory mechanisms required for multipotency maintenance. Moreover, it could be involved both in posttranscriptional regulation through deadenylation and genome surveillance during early development.


Assuntos
Exorribonucleases/genética , Exorribonucleases/metabolismo , Expressão Gênica , Poli A/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Retículo Endoplasmático/metabolismo , Exorribonucleases/química , Exorribonucleases/classificação , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Metilação , Camundongos , Modelos Moleculares , Conformação Molecular , Poli A/química , Poli A/genética , Poliadenilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
16.
RNA ; 21(10): 1790-806, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276802

RESUMO

In Staphylococcus aureus, a T-box riboswitch exists upstream of the glyS gene to regulate transcription of the sole glycyl-tRNA synthetase, which aminoacylates five tRNA(Gly) isoacceptors bearing GCC or UCC anticodons. Subsequently, the glycylated tRNAs serve as substrates for decoding glycine codons during translation, and also as glycine donors for exoribosomal synthesis of pentaglycine peptides during cell wall formation. Probing of the predicted T-box structure revealed a long stem I, lacking features previously described for similar T-boxes. Moreover, the antiterminator stem includes a 42-nt long intervening sequence, which is staphylococci-specific. Finally, the terminator conformation adopts a rigid two-stem structure, where the intervening sequence forms the first stem followed by the second stem, which includes the more conserved residues. Interestingly, all five tRNA(Gly) isoacceptors interact with S. aureus glyS T-box with different binding affinities and they all induce transcription readthrough at different levels. The ability of both GCC and UCC anticodons to interact with the specifier loop indicates ambiguity during the specifier triplet reading, similar to the unconventional reading of glycine codons during protein synthesis. The S. aureus glyS T-box structure is consistent with the recent crystallographic and NMR studies, despite apparent differences, and highlights the phylogenetic variability of T-boxes when studied in a genome-dependent context. Our data suggest that the S. aureus glyS T-box exhibits differential tRNA selectivity, which possibly contributes toward the regulation and synchronization of ribosomal and exoribosomal peptide synthesis, two essential but metabolically unrelated pathways.


Assuntos
Proteínas/metabolismo , RNA de Transferência de Glicina/metabolismo , Riboswitch , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Glicina/química , Homologia de Sequência do Ácido Nucleico , Staphylococcus aureus/genética , Transcrição Gênica
17.
RNA Biol ; 14(10): 1320-1325, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267419

RESUMO

Deadenylases belong to an expanding family of exoribonucleases involved mainly in mRNA stability and turnover, with the exception of PARN which has additional roles in the biogenesis of several important non-coding RNAs, including miRNAs and piRNAs. Recently, PARN in C. elegans and its homolog PNLDC1 in B. mori were reported as the elusive trimmers mediating piRNA biogenesis. In addition, characterization of mammalian PNLDC1 in comparison to PARN, showed that is specifically expressed in embryonic stem and germ cells, as well as during early embryo development. Moreover, its expression is correlated with epigenetic events mediated by the de novo DNMT3b methyltransferase and knockdown in stem cells upregulates important genes that regulate multipotency. The recent data suggest that at least some new deadenylases may have expanded roles in cell metabolism as regulators of gene expression, through mRNA deadenylation, ncRNAs biogenesis and ncRNA-mediated mRNA targeting, linking essential mechanisms that regulate epigenetic control and transition events during differentiation. The possible roles of mammalian PNLDC1 along those dynamic networks are discussed in the light of new extremely important findings.


Assuntos
Epigênese Genética , Exorribonucleases/metabolismo , Expressão Gênica , Animais , Bombyx/enzimologia , Bombyx/crescimento & desenvolvimento , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Estabilidade de RNA , RNA Mensageiro/química , RNA Interferente Pequeno/metabolismo , DNA Metiltransferase 3B
18.
Proc Natl Acad Sci U S A ; 110(31): 12756-61, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858450

RESUMO

T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.


Assuntos
Anticódon/metabolismo , Clostridium acetobutylicum/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência de Asparagina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Riboswitch/fisiologia , Anticódon/química , Anticódon/genética , Asparagina/biossíntese , Asparagina/genética , Clostridium acetobutylicum/química , Clostridium acetobutylicum/genética , Ácido Glutâmico/biossíntese , Ácido Glutâmico/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Transferência de Asparagina/química , RNA de Transferência de Asparagina/genética , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética
19.
J Antimicrob Chemother ; 70(6): 1625-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25712317

RESUMO

OBJECTIVES: Dependence on linezolid was recently described as significant growth acceleration of linezolid-resistant Staphylococcus epidermidis (LRSE) isolates upon linezolid exposure. We investigated the possible contribution of linezolid dependence to LRSE dissemination in Greece. METHODS: Linezolid resistance rates were estimated in six tertiary hospitals located throughout Greece between 2011 and 2013. Sixty-three randomly selected LRSE recovered in these hospitals during this period were studied. Growth curve analysis was conducted with and without linezolid. Clonality of the isolates was investigated by PFGE and MLST. RESULTS: During the study period, the LRSE rate in the participating hospitals rose significantly from 6.9% to 9% (P = 0.006); the increase was more prominent in ICUs (from 15.1% to 20.9%; P = 0.005). Forty-seven (74.6%) of the 63 LRSE, derived from all study hospitals, clearly exhibited linezolid dependence, growing significantly faster in the presence of 16 and 32 mg/L linezolid. Of note, 61 (96.8%) LRSE exhibited a single macrorestriction pattern and belonged to ST22, which included all linezolid-dependent LRSE. The remaining two LRSE belonged to unique STs. Five of six linezolid-dependent isolates tested also exhibited linezolid dependence upon exposure to 8 mg/L linezolid. Interestingly, five of six ST22 linezolid-non-dependent isolates tested developed linezolid dependence when linezolid exposure preceded growth analysis. CONCLUSIONS: The rapid LRSE dissemination in Greek hospitals threatens linezolid activity. The observation that most LRSE belonged to ST22 and expressed dependence on linezolid clearly implies that the spread of linezolid resistance should have been driven by this trait, which provided the LRSE with a selective advantage under linezolid pressure.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Linezolida/farmacologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Antibacterianos/metabolismo , Eletroforese em Gel de Campo Pulsado , Genótipo , Grécia/epidemiologia , Humanos , Linezolida/metabolismo , Tipagem de Sequências Multilocus , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/genética , Centros de Atenção Terciária
20.
Antimicrob Agents Chemother ; 58(8): 4651-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24890589

RESUMO

Linezolid-dependent growth was recently reported in Staphylococcus epidermidis clinical strains carrying mutations associated with linezolid resistance. To investigate this unexpected behavior at the molecular level, we isolated active ribosomes from one of the linezolid-dependent strains and we compared them with ribosomes isolated from a wild-type strain. Both strains were grown in the absence and presence of linezolid. Detailed biochemical and structural analyses revealed essential differences in the function and structure of isolated ribosomes which were assembled in the presence of linezolid. The catalytic activity of peptidyltransferase was found to be significantly higher in the ribosomes derived from the linezolid-dependent strain. Interestingly, the same ribosomes exhibited an abnormal ribosomal subunit dissociation profile on a sucrose gradient in the absence of linezolid, but the profile was restored after treatment of the ribosomes with an excess of the antibiotic. Our study suggests that linezolid most likely modified the ribosomal assembly procedure, leading to a new functional ribosomal population active only in the presence of linezolid. Therefore, the higher growth rate of the partially linezolid-dependent strains could be attributed to the functional and structural adaptations of ribosomes to linezolid.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Oxazolidinonas/farmacologia , Peptidil Transferases/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Adaptação Fisiológica , Centrifugação com Gradiente de Concentração , Farmacorresistência Bacteriana/genética , Cinética , Linezolida , Peptidil Transferases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Staphylococcus epidermidis/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA