Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Tetrahedron Lett ; 59(2): 130-134, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29545652

RESUMO

A novel and convenient method for the synthesis of C-terminally branched collagen-model peptides has been achieved using tricine (N-[tris(hydroxymethyl)methyl]glycine) as a branching scaffold and 1,2-diaminoethane or 1,4-diaminobutane as a linker. The peptide sequence was incorporated directly onto the linker and scaffold during solid-phase synthesis without additional manipulations. The resulting branched triple-helical peptides exhibited comparable thermal stabilities to the parent, unbranched sequence, and served as substrates for matrix metalloproteinase-1 (MMP-1). The tricine-based branch reported herein represents the simplest synthetic scaffold for the convenient synthesis of covalently linked homomeric collagen-model triple-helical peptides.

2.
Biochem Biophys Res Commun ; 469(4): 863-7, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26718410

RESUMO

The methionine sulfoxide reductase (Msr) family of enzymes has been shown to protect cells against oxidative damage. The two major Msr enzymes, MsrA and MsrB, can repair oxidative damage to proteins due to reactive oxygen species, by reducing the methionine sulfoxide in proteins back to methionine. A role of MsrA in animal aging was first demonstrated in Drosophila melanogaster where transgenic flies over-expressing recombinant bovine MsrA had a markedly extended life span. Subsequently, MsrA was also shown to be involved in the life span extension in Caenorhabditis elegans. These results supported other studies that indicated up-regulation, or activation, of the normal cellular protective mechanisms that cells use to defend against oxidative damage could be an approach to treat age related diseases and slow the aging process. In this study we have identified, for the first time, compounds structurally related to the natural products fusaricidins that markedly activate recombinant bovine and human MsrA and human MsrB.


Assuntos
Proteínas de Bactérias/química , Depsipeptídeos/química , Descoberta de Drogas/métodos , Metionina Sulfóxido Redutases/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Ativação Enzimática , Estabilidade Enzimática , Proteínas dos Microfilamentos
3.
Biochemistry ; 54(19): 3110-21, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25897652

RESUMO

Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.


Assuntos
Metaloproteinases da Matriz/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/química , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinases da Matriz/química , Especificidade por Substrato
4.
J Biol Chem ; 289(31): 21591-604, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24958723

RESUMO

Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382-393 and α1(IV)531-543 sequences, which are binding sites for the α2ß1 and α3ß1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl(393) in α1(IV)382-393 and Hyl(540) and Hyl(543) in α1(IV)531-543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3ß1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2ß1 integrin interaction with α1(IV)382-393 but right in the middle of α3ß1 integrin interaction with α1(IV)531-543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no ß-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.


Assuntos
Colágeno Tipo IV/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfa3beta1/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Glicosilação , Humanos , Modelos Moleculares , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 668-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24598736

RESUMO

Peptide-peptoid hybrids are found to be potent inhibitors of serine proteases. These engineered peptidomimetics benefit from both types of units of the biopolymeric structure: the natural inhibitor part serves as a good binding template, while the P1-positioned peptoid component provides complete resistance towards proteolysis. In this report, the mechanism of proteolytic resistance of a P1 peptoid-containing analogue is postulated based on the crystal structure of the (NLys)(5)-modified sunflower trypsin inhibitor SFTI-1 in complex with bovine trypsin solved at 1.29 Šresolution. The structural differences between the (NLys)(5)SFTI-1-trypsin complex and the native SFTI-1-trypsin complex are surprisingly small and reveal the key role of the carbonyl group of the Ser214 residue of the enzyme, which is crucial for binding of the inhibitor and plays a crucial role in proteolysis mediated by serine proteases. The incorporated NLys5 peptoid residue prevents Ser214 from forming a hydrogen bond to the P1 residue, and in turn Gln192 does not form a hydrogen bond to the carbonyl group of the P2 residue. It also increases the distance between the Ser214 carbonyl group and the Ser195 residue, thus preventing proteolysis. The hybrid inhibitor structure reported here provides insight into protein-protein interaction, which can be efficiently and selectively probed with the use of peptoids incorporated within endogenous peptide ligands.


Assuntos
Peptídeos Cíclicos/química , Peptoides/química , Domínios e Motivos de Interação entre Proteínas , Proteólise , Serina Proteases/metabolismo , Inibidores da Tripsina/química , Animais , Catálise , Bovinos , Cristalização , Cristalografia por Raios X , Dissulfetos , Ligação de Hidrogênio , Peptídeos Cíclicos/metabolismo , Peptoides/metabolismo , Inibidores da Tripsina/metabolismo
6.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979187

RESUMO

Development of fluorescent cholesterol analogs to better understand subcellular cholesterol trafficking is of great interest for cell biology and medicine. Our approach utilizes a bifunctional 1,8-naphthalimide scaffold with a push-pull character, modified on one side with a head group and a linker on the other side connecting it to cholesterol via an ester bond. Through structure-function studies, we've explored how different substituents-linkers and head groups-affect the ability of these fluorescent cholesterol naphthalimide analogs (CNDs) to mimic natural cholesterol behavior at both molecular and cellular levels. We categorized the resulting analogs into three groups: neutral, charged, and those featuring a hydroxyl group. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes. Extensive all-atom molecular dynamics simulations helped us examine how these analogs perform in model membranes compared to cholesterol. Additionally, we investigated the partitioning of these fluorescent probes in phase-separated giant unilamellar vesicles. We evaluated the uptake and distribution of these probes within mouse fibroblast cells and astrocytes, for their subcellular distributions in lysosomes and compared that to BODIPY-cholesterol, a well-regarded fluorescent cholesterol analog. The internalization efficiency of the fluorescent probes varies in different cell types and is affected mainly by the head groups. Our results demonstrate that the modular design significantly simplifies the creation of fluorescent cholesterol probes bearing distinct spectral, biophysical, and cellular targeting features, which makes it a valuable toolkit for the investigation of subcellular distribution and trafficking of cholesterol and its derivatives.

7.
Amino Acids ; 42(1): 285-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21082204

RESUMO

A simple and practical general synthetic protocol towards orthogonally protected tHyAsp derivatives fully compatible with Fmoc solid-phase peptide synthetic methodology is reported. Our approach includes enantioresolution of commercially available D: ,L: -tHyAsp racemic mixture by co-crystallization with L: -Lys, followed by ion exchange chromatography yielding enantiomerically pure L: -tHyAsp and D: -tHyAsp, and their selective orthogonal protection. In this way N ( α )-Fmoc protected tHyAsp derivatives were prepared ready for couplings via either α- or ß-carboxylic group onto the resins or the growing peptide chain. In addition, coupling of tHyAsp via ß-carboxylic group onto amino resins allows preparation of peptides containing tHyAsn sequences, further increasing the synthetic utility of prepared tHyAsp derivatives.


Assuntos
Ácido Aspártico/análogos & derivados , Ácido Aspártico/síntese química , Ácido Aspártico/química , Estrutura Molecular , Estereoisomerismo
8.
J Vis Exp ; (173)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398155

RESUMO

Exo-/endocytosis is a common process mediating the exchange of biomolecules between cells and their environment and among different cells. Specialized cells use this process to execute vital body functions such as insulin secretion from ß cells and neurotransmitter release from chemical synapses. Owing to its physiological significance, exo-/endocytosis has been one of the most studied topics in cell biology. Many tools have been developed to study this process at the gene and protein level, because of which much is known about the protein machinery participating in this process. However, very few methods have been developed to measure membrane lipid turnover, which is the physical basis of exo-/endocytosis. This paper introduces a class of new fluorescent lipid analogs exhibiting pH-dependent fluorescence and demonstrates their use to trace lipid recycling between the plasma membrane and the secretory vesicles. Aided by simple pH manipulations, those analogs also allow the quantification of lipid distribution across the surface and the intracellular membrane compartments, as well as the measurement of lipid turnover rate during exo-/endocytosis. These novel lipid reporters will be of great interest to various biological research fields such as cell biology and neuroscience.


Assuntos
Endocitose , Lipídeos de Membrana , Membrana Celular , Concentração de Íons de Hidrogênio , Sinapses
9.
ACS Chem Neurosci ; 12(4): 719-734, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33508202

RESUMO

Membrane trafficking is essential for all cells, and visualizing it is particularly useful for studying neuronal functions. Here we report the synthesis, characterization, and application of several membrane- and pH-sensitive probes suitable for live-cell fluorescence imaging. These probes are based on a 1,8-naphthalimide fluorophore scaffold. They exhibit a solvatochromic effect, and one of them, ND6, shows a substantial fluorescence difference between pH 6 and 7. The solvatochromic effect and pH-sensitivity of those probes are explained using quantum chemical calculations, and molecular dynamics simulation confirms their integration and interaction with membrane lipids. For live-cell fluorescence imaging, we tested those probes in a cancer cell line (MCF7), cancer spheroids (MDA-MB-468), and cultured hippocampal neurons. Confocal imaging showed an excellent signal-to-noise ratio from 400:1 to about 1300:1 for cell membrane labeling. We applied ND6 during stimulation to label nerve terminals via dye uptake during evoked synaptic vesicle turnover. By ND6 imaging, we revealed cholesterol's multifaced role in replenishing synaptic vesicle pools. Our results demonstrate these fluorescent probes' great potential in studying membrane dynamic and synaptic functions in neurons and other secretory cells and tissues.


Assuntos
Corantes Fluorescentes , Vesículas Sinápticas , Hipocampo , Concentração de Íons de Hidrogênio , Neurônios
10.
Biochim Biophys Acta ; 1783(10): 1745-54, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18555805

RESUMO

Leptin, a hormone produced by adipose tissue, regulates energy balance in the hypothalamus and is involved in fertility, immune response and carcinogenesis. The existence of disorders related to leptin deficit and leptin overabundance calls for the development of drugs activating or inhibiting the leptin receptor (ObR). We synthesized four proposed receptor-binding leptin fragments (sites I, IIa and IIb, III), their reportedly antagonist analogs, and a peptide chimera composed of the two discontinuous site II arms. To assess the pharmacological utility of leptin fragments, we studied the peptides' ability to stimulate the growth of ObR-positive and ObR-negative cells. The combined site II construct and site III derivatives selectively reversed leptin-induced growth of ObR-positive cells at mid-nanomolar concentrations. However, these peptides appeared to be partial agonists/antagonists as they activated cell growth in the absence of exogenous leptin. A designer site III analog, featuring non-natural amino acids at terminal positions to decrease proteolysis and a blood-brain barrier (BBB) penetration-enhancing carbohydrate moiety, proved to be full agonist to ObR, i.e., stimulated proliferation of different ObR-positive but not ObR-negative cells in the presence or absence of leptin. This glycopeptide bound to isolated ObR on solid-phase assays and activated ERK-1/2 signaling in ObR-positive MCF-7 cells at 100-500 nM concentrations. The glycopeptide was stable in mouse serum, readily crossed endothelial/astrocyte cell layers in a cellular BBB model, and was distributed into the brain of Balb/c mice after intraperitoneal administration. These characteristics suggest a potential pharmaceutical utility of the designer site III glycopeptide in leptin-deficient diseases.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Receptores para Leptina/agonistas , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Peptídeos/síntese química , Receptores para Leptina/metabolismo
11.
Protein Pept Lett ; 26(10): 758-767, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31215362

RESUMO

BACKGROUND: Herein we report the multigram-scale synthesis, characterization and application of a rhodamine B-based fluorophore (ROSA) suitable for fluorescent studies in biological applications. This fluorophore is devoid of rhodamine spirolactone formation and furthermore characterized by a high molar extinction coefficient (ϵ=87250 ± 1630 M-1cm-1) and quantum yield (φ) of 0.589 ± 0.070 in water. Reported here is also the application of ROSA towards synthesis of a ROSA-PEG-GRGDS-NH2 fluorescent probe suitable for live cell imaging of αvß3 integrins for in vitro assays. OBJECTIVES: The main objective of this study is to efficiently prepare rhodamine B derivative, devoid of spirolactone formation that would be suitable for bioconjugation and subsequent bioimaging. METHODS: Rhodamine B was transformed into rhodamine B succinimide ester (RhoB-OSu) using N-hydroxysuccinimide. RhoB-OSu was further coupled to sarcosine to obtain rhodamine Bsarcosine dye (ROSA) in good yield. The ROSA dye was then coupled to a αvß3 integrin binding sequence using standard solid-phase conditions. Resulting ROSA-PEG-GRGDS-NH2 probe was used to image integrins on cancer cells. RESULTS: The rhodamine B-sarcosine dye (ROSA) was obtained in multigram scale in good total yield of 47%. Unlike rhodamine B, the ROSA dye does not undergo pH-dependent spirolactone/spirolactam formation as compared with rhodamine B-glycine. It is also characterized by excellent quantum yield (φ) of 0.589 ± 0.070 in water and high molar extinction coefficient of 87250 ± 1630 M-1cm-1. ROSA coupling to the RGD-like peptide was proved to be efficient and straightforward. Imaging using standard filters on multimode plate reader and confocal microscope was performed. The αvß3 integrins present on the surface of live WM-266-4 (melanoma) and MCF- 7 (breast cancer) cells were successfully imaged. CONCLUSION: We successfully derivatized rhodamine B to create an inexpensive, stable and convenient to use fluorescent probe. The obtained derivative has excellent photochemical properties and it is suitable for bioconjugation and many imaging applications.


Assuntos
Corantes Fluorescentes/síntese química , Integrina alfaVbeta3/química , Imagem Óptica/métodos , Rodaminas/síntese química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Oligopeptídeos/química , Succinimidas/química
12.
Methods Mol Biol ; 494: 223-46, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18726577

RESUMO

Peptidomimetic modifications or cyclization of linear peptides are frequently used as attractive methods to provide more conformationally constrained and thus more stable and bioactive peptides. Among numerous peptidomimetic approaches described recently in the literature, particularly attractive are pseudopeptides or peptide bond surrogates in which peptide bonds have been replaced with other chemical groups. In these peptidomimetics the amide bond surrogates possess three-dimensional structures similar to those of natural peptides, yet with significant differences in polarity, hydrogen bonding capability, and acid-base character. The introduction of such modifications to the peptide sequence is expected to completely prevent protease cleavage of amide bond and significantly improve peptides' metabolic stability. In this chapter we consider Fmoc solid-phase synthesis of peptide analogs containing the amide surrogate that tend to be isosteric with the natural amide. This includes synthesis of peptidosulfonamides, phosphonopeptides, oligoureas, depsides, depsipeptides, and peptoids.


Assuntos
Aminoácidos , Fluorenos , Mimetismo Molecular , Peptídeos , Sequência de Aminoácidos , Aminoácidos/síntese química , Aminoácidos/química , Desenho de Fármacos , Fluorenos/síntese química , Fluorenos/química , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Sulfonamidas/síntese química , Sulfonamidas/química , Ureia/síntese química , Ureia/química
13.
Methods Mol Biol ; 386: 321-39, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18604953

RESUMO

Naturally occurring cyclic depsipeptides, peptides that contain one or more ester bonds in addition to the amide bonds, have emerged as an important source of pharmacologically active compounds or promising lead structures for the development of novel synthetically derived drugs. This class of natural products has been found in many organisms, such as fungi, bacteria, and marine organisms. It is very well known that cyclic depsipeptides and their derivatives exhibit a diverse spectrum of biological activities, including insecticidal, antiviral, antimicrobial, antitumor, tumor-promotive, anti-inflammatory, and immunosuppressive actions. However, they have shown the greatest therapeutic potential as anticancer and particularly antimicrobial agents. Difficulties associated with isolation and purification of larger quantities of this class of natural products and, particularly, unlimited access to their synthetic analogs significantly hampered cyclic depsipeptides exploitation as lead compounds for development of new drugs. As an alternative, total solution or solid-phase peptide synthesis of these important natural products and combinatorial chemistry approaches can be employed to elucidate structure-activity relationships and to find new potent compounds of this class. In this chapter, methods for formation of depsipeptide ester bonds, hydroxyl group protection, and solid-phase reaction monitoring are described.


Assuntos
Peptídeos Cíclicos/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Daptomicina/síntese química , Daptomicina/química , Daptomicina/farmacologia , Depsipeptídeos/síntese química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Desenho de Fármacos , Esterificação , Hidroxilação , Indicadores e Reagentes , Biologia Molecular/métodos , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Extração em Fase Sólida
14.
Methods Mol Biol ; 1579: 137-183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299736

RESUMO

A continuous assay method, such as the one that utilizes an increase in fluorescence upon hydrolysis, allows for rapid and convenient kinetic evaluation of proteases. To better understand MMP behaviors toward native substrates, a variety of fluorescence resonance energy transfer (FRET)/intramolecular fluorescence energy transfer (IFET) triple-helical substrates have been constructed to examine the collagenolytic activity of MMP family members. Results of these studies have been valuable for providing insights into (a) the relative triple-helical peptidase activities of the various collagenolytic MMPs, (b) the collagen preferences of these MMPs, and (c) the relative roles of MMP domains and specific residues in efficient collagenolysis. The present chapter provides an overview of MMP FRET triple-helical substrates and describes how to construct and utilize these substrates.


Assuntos
Colágeno/química , Colágeno/metabolismo , Metaloproteinases da Matriz/metabolismo , Transferência Ressonante de Energia de Fluorescência , Hidrólise , Metaloproteinases da Matriz/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
15.
FEBS J ; 273(22): 5113-20, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17087727

RESUMO

Dynorphin-converting enzymes constitute a group of peptidases capable of converting dynorphins to enkephalins. Through the action of these enzymes, the dynorphin-related peptides bind to delta-opioid instead of kappa-opioid receptors, leading to a change in the biological function of the neuropeptides. In this article, we describe the identification of the protein bikunin as an endogenous, competitive inhibitor of a dynorphin-converting enzyme in human cerebrospinal fluid. This protein is present together with its target enzyme in the same body fluids. The K(M) value of the convertase was found to be 9 microm, and the K(i) value of the inhibitor was 1.7 nm. The finding indicates that bikunin may play a significant role as a regulatory mechanism of neuropeptides, where one bioactive peptide is converted to a shorter sequence, which in turn, can affect the action of its longer form.


Assuntos
alfa-Globulinas/líquido cefalorraquidiano , alfa-Globulinas/fisiologia , Cisteína Endopeptidases/líquido cefalorraquidiano , alfa-Globulinas/isolamento & purificação , Sequência de Aminoácidos , Proteínas do Líquido Cefalorraquidiano/isolamento & purificação , Proteínas do Líquido Cefalorraquidiano/fisiologia , Inibidores de Cisteína Proteinase/líquido cefalorraquidiano , Inibidores de Cisteína Proteinase/isolamento & purificação , Humanos , Dados de Sequência Molecular
16.
Tetrahedron Lett ; 47(48): 8587-8590, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17440603

RESUMO

A rapid and efficient Fmoc solid-phase synthesis of cyclic lipodepsipeptide analogue 1 to antibiotic fusaricidin A is described. Our synthetic approach includes resin attachment of the first amino acid via side chain, successful use of combination of four quasi-orthogonal removable protecting groups, stepwise solid-phase synthesis of linear peptide analogue, lipid tail attachment followed by depsipeptide bond formation and on-resin head-to-tail cyclization. Undesired O→N acyl shift, which may occur during Fmoc removal, was successfully avoided by the incorporation of the lipid tail into the linear peptide precursor prior to on-resin depsipeptide bond formation and the ring closure.

17.
Methods Mol Biol ; 1406: 303-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820965

RESUMO

Proteolysis has been cited as an important contributor to cancer initiation and progression. One can take advantage of tumor-associated proteases to selectively deliver imaging agents. Protease-activated imaging systems have been developed using substrates designed for hydrolysis by members of the matrix metalloproteinase (MMP) family. We presently describe approaches by which one can optically image matrix metalloproteinase activity implicated in breast cancer progression, with consideration of selective versus broad protease probes.


Assuntos
Neoplasias da Mama/patologia , Progressão da Doença , Metaloproteinases da Matriz/metabolismo , Imagem Molecular/métodos , Linhagem Celular Tumoral , Humanos , Metaloproteinases da Matriz/química , Microscopia Confocal , Microscopia de Fluorescência , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína
20.
Cancers (Basel) ; 6(1): 416-35, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24549119

RESUMO

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA