Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(4)2019 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30813472

RESUMO

The cardioprotective effects of ginseng root extracts have been reported. However, nothing is known about the myocardial actions of the phenolic compounds enriched in ginseng berry. Therefore, this study was undertaken to investigate the effects of American ginseng berry extract (GBE) in an experimental model of myocardial infarction (MI). Coronary artery ligation was performed on Sprague⁻Dawley male rats to induce MI after which animals were randomized into groups receiving either distilled water or GBE intragastrically for 8 weeks. Echocardiography and assays for malondialdehyde (MDA) and TNF-α were conducted. Flow cytometry was used to test the effects of GBE on T cell phenotypes and cytokine production. Although GBE did not improve the cardiac functional parameters, it significantly attenuated oxidative stress in post-MI rat hearts. GBE treatment also resulted in lower than control levels of TNF-α in post-MI rat hearts indicating a strong neutralizing effect of GBE on this cytokine. However, there was no effect of GBE on the proportion of different T cell subsets or ex-vivo cytokine production. Taken together, the present study demonstrates GBE reduces oxidative stress, however no effect on cardiac structure and function in post-MI rats. Moreover, reduction of TNF-α levels below baseline raises concern regarding its use as prophylactic or preventive adjunct therapy in cardiovascular disease.


Assuntos
Frutas/química , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Estresse Oxidativo , Panax/química , Fenóis/uso terapêutico , Remodelação Ventricular , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peso Corporal/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/fisiopatologia , Citocinas/biossíntese , Diástole , Testes de Função Cardíaca , Imunofenotipagem , Inflamação/patologia , Masculino , Infarto do Miocárdio/patologia , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Fenóis/farmacologia , Ratos Sprague-Dawley , Remodelação Ventricular/efeitos dos fármacos
2.
Foods ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35407088

RESUMO

Pulse consumption has been associated with reduced postprandial glucose response (PPGR) and improved satiety. The objective of this study was (i) to investigate the effects of fortifying white pan bread with split yellow pea (Pisum sativum L.) flour on PPGR and appetite-related sensations, and (ii) to determine whether Revtech heat processing of pea flour alters the postprandial effects. A randomized controlled crossover trial was performed with 24 healthy adults. Participants consumed 50 g available carbohydrate from bread containing 20% pea flour that was untreated (USYP), Revtech processed at 140 °C with no steam (RT0%), Revtech processed at 140 °C with 10% steam (RT10%), or a control bread with 100% white wheat flour (100%W). Blood samples were analyzed for glucose and plasma insulin at 0, 15, 30, 45, 60, 90, and 120 min post-meal. Appetite sensations and product acceptability were measured using visual analogue and 9-point hedonic scales. Results showed no significant difference in the postprandial glucose and insulin responses of different bread treatments. However, pea-containing variants resulted in 18% higher fullness and 16-18% lower hunger, desire to eat, and prospective food consumption ratings compared to 100% W. No differences in the aroma, flavor, color, and overall acceptability of different bread products were observed. This trial supports using pea flour as a value-added ingredient to improve the short-term appetite-related sensations of white pan bread without affecting the overall acceptability.

3.
Proteomics ; 11(5): 865-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21280218

RESUMO

Oxidative signalling by ROS has been demonstrated to play a role in seed dormancy alleviation, but the detailed molecular mechanisms underlying this process remain largely unknown. Here, we show dynamic differences in redox-sensitive proteome upon wheat seed dormancy release. Using thiol-specific fluorescent labelling, solubility-based protein fractionation, 2-D IEF PAGE, and MS analysis in conjunction with wheat EST sequence libraries, proteins with reversible oxidoreductive changes were characterized. Altogether, 193 reactive Cys were found in 79 unique proteins responding differentially in dormant, non-dormant, abscisic, or gibberellic acid-treated seed protein extracts from RL4137, a wheat cultivar with extreme dormancy. The identified proteins included groups that are redox-, stress-, and pathogen-responsive, involved in protein synthesis and storage, are enzymes of carbohydrate metabolism, proteases, and those involved in transport and signal transduction. Two types of redox response could be detected: (i) a dramatic increase in protein thiol redox state in seeds during imbibition and hormonal treatment; (ii) higher antioxidant capacity related to sensing of a threshold redox potential and balancing the existing redox pools, in dry dormant versus non-dormant seeds. These results highlight occurrence of the antioxidant defence mechanisms required for the protection of seed during a dormancy stage.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/fisiologia , Triticum/metabolismo , Ácido Abscísico/farmacologia , Eletroforese em Gel Bidimensional , Etiquetas de Sequências Expressas , Biblioteca Gênica , Germinação/efeitos dos fármacos , Germinação/fisiologia , Giberelinas/farmacologia , Focalização Isoelétrica , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteoma/análise , Proteoma/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Espectrometria de Fluorescência , Compostos de Sulfidrila/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética
4.
Phytochemistry ; 72(10): 1162-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21295800

RESUMO

The thiol redox-sensitive and the total proteome in harvest-ripe grains of closely related genotypes of wheat (Triticum aestivum L.), with either a dormant or a non-dormant phenotype, were investigated using hybrid lines of spring wheat double haploid population segregating transgressively, to gain further insight into seed dormancy controlling events. Redox signalling by reactive oxygen species has been shown to play a role in seed dormancy alleviation. Thiol-disulfide proteins are of particular importance in the context of redox-dependent regulation as a central and flexible mechanism to control metabolic and developmental activities of the cells. Here we describe functional proteomic profiling of reversible oxidoreductive changes and characterize in vivo intrinsic reactivity of cysteine residues using thiol-specific fluorescent labelling, solubility-based protein fractionation, two-dimensional electrophoresis, and mass spectrometry analysis in conjunction with wheat EST sequence libraries. Quantitative differences between genotypes were found for 106 spots containing 64 unique proteins. Forty seven unique proteins displayed distinctive abundance pattern, and among them 31 proteins contained 78 unique redox active cysteines. Seventeen unique proteins with 19 reactive modified cysteines were found to have differential post-translational thiol redox modification. The results provide an insight into the alteration of thiol-redox profiles in proteins that function in major processes in seeds and include groups of redox- and stress-responsive, genetic information processing and cell cycle control, transport and storage proteins, enzymes of carbohydrate metabolism, proteases and their inhibitors.


Assuntos
Hibridização Genética , Proteínas de Plantas/genética , Proteoma/metabolismo , Sementes/metabolismo , Compostos de Sulfidrila/metabolismo , Triticum/genética , Triticum/metabolismo , Genótipo , Oxirredução , Fenótipo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA