Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(26): 5245-5257, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904180

RESUMO

The behavior of fluid interfaces far from equilibrium plays central roles in nature and in industry. Active swimmers trapped at interfaces can alter transport at fluid boundaries with far reaching implications. Swimmers can become trapped at interfaces in diverse configurations and swim persistently in these surface adhered states. The self-propelled motion of bacteria makes them ideal model swimmers to understand such effects. We have recently characterized the swimming of interfacially trapped Pseudomonas aeruginosa PA01 moving in pusher mode. The swimmers adsorb at the interface with pinned contact lines, which fix the angle of the cell body at the interface and constrain their motion. Thus, swimmers become trapped at interfaces in diverse configurations and swim persistently in these surface adhered states. We observe that most interfacially trapped bacteria swim along circular paths. Fluid interfaces also typically form incompressible two-dimensional layers. These effects influence the flow generated by the swimmers. In our previous work, we have visualized the interfacial flow around a pusher bacterium and described the flow field using two dipolar hydrodynamic modes; one stresslet mode whose symmetries differ from those in bulk, and another bulk mode unique to incompressible fluid interfaces. Based on this understanding, swimmer-induced tracer displacements and swimmer-swimmer pair interactions are explored using analysis and experiment. The settings in which multiple interfacial swimmers with circular motion can significantly enhance interfacial transport of tracers or promote mixing of other swimmers on the interface are identified through simulations and compared to experiment. This study shows the importance of biomixing by swimmers at fluid interfaces and identifies important factors in the design of biomimetic active colloids to enhance interfacial transport.

2.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38421070

RESUMO

Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded volume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ɛ. At low ɛ, excluded volume interactions lead to an energetic penalty and longer translocation times. As ɛ increases, the surface interactions counteract the energetic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ɛ continues to increase, an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ɛ at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at higher ɛ. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a smaller cavity speeds up while translocation to a larger cavity slows down with increasing ɛ due to higher surface contact under stronger confinement.

3.
Phys Rev Lett ; 126(22): 228003, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152169

RESUMO

Understanding the flow created by particle motion at interfaces is a critical step toward understanding hydrodynamic interactions and colloidal self organization. We have developed correlated displacement velocimetry to measure flow fields around interfacially trapped Brownian particles. These flow fields can be decomposed into interfacial hydrodynamic multipoles, including force monopole and dipole flows. These structures provide key insights essential to understanding the interface's mechanical response. Importantly, the flow structure shows that the interface is incompressible for scant surfactant near the ideal gaseous state and contains information about interfacial properties and hydrodynamic coupling with the bulk fluid. The same dataset can be used to predict the response of the interface to applied, complex forces, enabling virtual experiments that produce higher order interfacial multipoles.

4.
Soft Matter ; 17(35): 8195-8210, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525167

RESUMO

We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.


Assuntos
Biofilmes , Água , Bactérias , Pseudomonas aeruginosa , Reologia
5.
Langmuir ; 36(25): 6888-6902, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32097012

RESUMO

Bacteria are important examples of active or self-propelled colloids. Because of their directed motion, they accumulate near interfaces. There, they can become trapped and swim adjacent to the interface via hydrodynamic interactions, or they can adsorb directly and swim in an adhered state with complex trajectories that differ from those in bulk in both form and spatiotemporal implications. We have adopted the monotrichous bacterium Pseudomonas aeruginosa PA01 as a model species and have studied its motion at oil-aqueous interfaces. We have identified conditions in which bacteria swim persistently without restructuring the interface, allowing detailed and prolonged study of their motion. In addition to characterizing the ensemble behavior of the bacteria, we have observed a gallery of distinct trajectories of individual swimmers on and near fluid interfaces. We attribute these diverse swimming behaviors to differing trapped states for the bacteria in the fluid interface. These trajectory types include Brownian diffusive paths for passive adsorbed bacteria, curvilinear trajectories including curly paths with radii of curvature larger than the cell body length, and rapid pirouette motions with radii of curvature comparable to the cell body length. Finally, we see interfacial visitors that come and go from the interfacial plane. We characterize these individual swimmer motions. This work may impact nutrient cycles for bacteria on or near interfaces in nature. This work will also have implications in microrobotics, as active colloids in general and bacteria in particular are used to carry cargo in this burgeoning field. Finally, these results have implications in engineering of active surfaces that exploit interfacially trapped self-propelled colloids.


Assuntos
Hidrodinâmica , Pseudomonas aeruginosa , Bactérias , Difusão , Água
6.
Soft Matter ; 16(25): 5848-5853, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181471

RESUMO

Bicontinuous interfacially jammed emulsion gels (bijels), in which the oil and water phases are co-continuous throughout the structure, have potential for applications in separation, catalysis, tissue engineering and energy devices. Among the possible fabrication paths, the solvent transfer-induced phase separation (STRIPS) method has proven to be a powerful approach to produce bijels in a continuous fashion with a broad selection of liquids and nanoparticles. The successful formation of bicontinuous domains requires the use of neutrally wetting particles which was achieved by in situ modification of silica nanoparticles with an oppositely charged surfactant. This approach, however, is not ideal for applications that are adversely affected by the presence of surfactant. In this work, we use a pair of nanoparticles, one hydrophilic, and the other hydrophobic, to stabilize STRIPS bijels without any surfactants and show that the ratio of the hydrophilic to hydrophobic nanoparticles required to form stable bijels changes with the polarity of the oil phase. Highly non-polar oils require a smaller ratio than moderately polar oils. Furthermore, if a sufficiently polar oil is selected, STRIPS bijels can be stabilized using only the hydrophilic nanoparticle. Our results demonstrate the potential to imbue the interface of biphasic liquid mixtures such as bijels with multifunctionality by using two functional nanoparticles of opposite polarity.

7.
Soft Matter ; 16(25): 5861-5870, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530016

RESUMO

Capillary interactions are ubiquitous between colloids trapped at fluid interfaces. Generally, colloids in fluid interfaces have pinned, undulated contact lines that distort the interface around them. To minimize the area, and therefore the energy of these distortions, colloids interact and assemble in a manner that depends on the shape of the host interface. On curved interfaces, capillary interactions direct isolated colloid motion along deviatoric curvature gradients. This directed motion relies on the leading order, long-ranged quadrupolar distortions made by the colloids' undulated pinned contact lines. Here we study pair interactions and dimer formation of colloids on non-uniformly curved fluid interfaces. Pair interaction energies are inferred to be order of 104kBT, and interacting forces are of order 10-1 pN for 10 micron particles adsorbed on interfaces formed around a 250 micron micropost. We compare experiments to analysis for the pair interaction energy, and identify criteria for dimers to form. We also study the formation of trapped structures by multiple particles to discern the influence of the underlying interface shape and the contact line undulations. By comparison to Monte Carlo simulations with potentials of interactions based on analysis, we find that higher order terms in the distortion fields generated by the particles play a major role in the structure formation on the curved interface. These interactions are determined by the particle's contact line and the host interface shape, and can be used to assemble particles independent of their material properties.

8.
Langmuir ; 35(28): 9274-9285, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31259559

RESUMO

Nematic liquid crystals (NLCs) offer remarkable opportunities to direct colloids to form complex structures. The elastic energy field that dictates colloid interactions is determined by the NLC director field, which is sensitive to and can be controlled by boundaries including vessel walls and colloid surfaces. By molding the director field via liquid-crystal alignment on these surfaces, elastic energy landscapes can be defined to drive structure formation. We focus on colloids in otherwise defect-free director fields formed near undulating walls. Colloids can be driven along prescribed paths and directed to well-defined docking sites on such wavy boundaries. Colloids that impose strong alignment generate topologically required companion defects. Configurations for homeotropic colloids include a dipolar structure formed by the colloid and its companion hedgehog defect or a quadrupolar structure formed by the colloid and its companion Saturn ring. Adjacent to wavy walls with wavelengths larger than the colloid diameter, spherical particles are attracted to locations along the wall with distortions in the nematic director field that complement those from the colloid. This is the basis of lock-and-key interactions. Here, we study ellipsoidal colloids with homeotropic anchoring near complex undulating walls. The walls impose distortions that decay with distance from the wall to a uniform director in the far field. Ellipsoids form dipolar defect configurations with the colloid's major axis aligned with the far field director. Two distinct quadrupolar defect structures also form, stabilized by confinement; these include the Saturn I configuration with the ellipsoid's major axis aligned with the far field director and the Saturn II configuration with the major axis perpendicular to the far field director. The ellipsoid orientation varies only weakly in bulk and near undulating walls. All configurations are attracted to walls with long, shallow waves. However, for walls with wavelengths that are small compared to the colloid length, Saturn II is repelled, allowing selective docking of aligned objects. Deep, narrow wells prompt the insertion of a vertical ellipsoid. By introducing an opening at the bottom of such a deep well, we study colloids within pores that connect two domains. Ellipsoids with different aspect ratios find different equilibrium positions. An ellipsoid of the right dimension and aspect ratio can plug the pore, creating a class of 2D selective membranes.

9.
Soft Matter ; 15(26): 5220-5226, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31172164

RESUMO

By confining soft materials within tailored boundaries it is possible to design energy landscapes to address and control colloidal dynamics. This provides unique opportunities to create reconfigurable, hierarchically organized structures, a leading challenge in materials science. Example soft matter systems include liquid crystals. For instance, when nematic liquid crystals (NLCs) are confined in a vessel with undulated boundaries, bend and splay distortions can be used to position particles. Here we confine this system in a twist cell. We also study cholesteric liquid crystals, which have an "intrinsic" twist distortion which adds to the ones imposed by the solid boundaries. The cholesteric pitch competes with the other length scales in the system (colloid radius, vessel thickness, wavelength of boundary undulations), enriching the possible configurations. Depending on the pitch-to-radius and pitch-to-thickness ratios the interaction can be attractive or repulsive. By tuning the pitch (i.e. changing the concentration of the chiral dopant), it is possible to selectively promote or inhibit particle trapping at the docking sites.

10.
Proc Natl Acad Sci U S A ; 113(26): 7106-11, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27222582

RESUMO

Systems with holes, such as colloidal handlebodies and toroidal droplets, have been studied in the nematic liquid crystal (NLC) 4-cyano-4'-pentylbiphenyl (5CB): Both point and ring topological defects can occur within each hole and around the system while conserving the system's overall topological charge. However, what has not been fully appreciated is the ability to manipulate the hole geometry with homeotropic (perpendicular) anchoring conditions to induce complex, saddle-like deformations. We exploit this by creating an array of holes suspended in an NLC cell with oriented planar (parallel) anchoring at the cell boundaries. We study both 5CB and a binary mixture of bicyclohexane derivatives (CCN-47 and CCN-55). Through simulations and experiments, we study how the bulk saddle deformations of each hole interact to create defect structures, including an array of disclination lines, reminiscent of those found in liquid-crystal blue phases. The line locations are tunable via the NLC elastic constants, the cell geometry, and the size and spacing of holes in the array. This research lays the groundwork for the control of complex elastic deformations of varying length scales via geometrical cues in materials that are renowned in the display industry for their stability and easy manipulability.

11.
Biophys J ; 114(6): 1467-1476, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590603

RESUMO

We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces.


Assuntos
Movimento Celular , Fibras de Estresse/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Camundongos , Distribuição Normal
12.
FASEB J ; 31(11): 5078-5086, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28765175

RESUMO

Tumor cell extravasation is a multistep process preceded by cell rolling and arrest on the vessel wall via the formation of specific receptor-ligand bonds. The strength, availability, and number of receptor-ligand bonds regulate the rate by which tumor cells tether, roll, and adhere to vascular walls. Although the mechanics of selectin-mediated rolling have been extensively studied, little is known regarding how tumor cell rolling on selectins facilitates adhesion to a distinct substrate-bound protein with different kinetic properties. By using multicomponent protein patterning and a microfluidic system, we evaluated how E-selectin-dependent rolling modulates hyaluronic acid (HA) adhesion as a function of fluid shear, contact time, and the spacing between E-selectin and HA regions patterned on the substrate. We show that tumor cells rolling on E-selectin were ∼40-fold more likely to bind to HA than nonrolling cells in shear flow. Furthermore, E-selectin-dependent rolling promotes adhesion to HA by both physically slowing cells and enabling them to position proximal to the surface, thereby increasing the on rate of adhesion. A better understanding of tumor cell adhesion under physiologic shear would lead to the development of new diagnostic assays and pave the way to clinical approaches aimed ultimately to halt metastasis.-Shea, D. J., Li, Y. W., Stebe, K. J., Konstantopoulos, K. E-selectin-mediated rolling facilitates pancreatic cancer cell adhesion to hyaluronic acid.


Assuntos
Selectina E/metabolismo , Ácido Hialurônico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Selectina E/genética , Humanos , Ácido Hialurônico/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
13.
Langmuir ; 34(3): 847-853, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28609107

RESUMO

Polyelectrolyte microcapsules are versatile compartments for encapsulation, protection, and controlled/triggered release of active agents. Conventional methods of polyelectrolyte microcapsule preparation require multiple steps or do not allow for efficient encapsulation of active agents in the lumen of the microcapsule. In this work, we present the fabrication of hollow polyelectrolyte microcapsules with a salt-responsive property based on surfactant organized nanoscale interfacial complexation in emulsions (SO NICE). In SO NICE, polyelectrolyte microcapsules are templated by water-in-oil-in-water (W/O/W) double emulsions. One polyelectrolyte is dissolved in the inner water droplet of the W/O/W double emulsions, whereas the second polyelectrolyte is dissolved in the organic phase by hydrophobic ion paring with an oppositely charged hydrophobic surfactant. Interfacial complexation of the two polyelectrolytes generates a few hundred-nanometer thick film at the inner water-oil interface of the W/O/W double emulsions. SO NICE microcapsules can be triggered to release their cargo by increasing the ionic strength of the solution, which is a hallmark of polyelectrolyte-based microcapsules. By enabling dissolution and interfacial complexation of polyelectrolytes in organic solvents, SO NICE widens the pallet of polymers that can be used to generate functional polyelectrolyte microcapsules with high encapsulation efficiency for applications in encapsulation and controlled/triggered release.

14.
Langmuir ; 34(5): 2006-2013, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29303275

RESUMO

Colloidal particles at complex fluid interfaces and within films assemble to form ordered structures with high degrees of symmetry via interactions that include capillarity, elasticity, and other fields like electrostatic charge. Here we study microparticle interactions within free-standing smectic-A films, in which the elasticity arising from the director field distortion and capillary interactions arising from interface deformation compete to direct the assembly of motile particles. New colloidal assemblies and patterns, ranging from 1D chains to 2D aggregates, sensitive to the initial wetting conditions of particles at the smectic film, are reported. This work paves the way to exploiting LC interfaces as a means to direct spontaneously formed, reconfigurable, and optically active materials.

15.
Soft Matter ; 14(27): 5643-5653, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943791

RESUMO

The displacements of ensembles of colloids at the interface between oil and suspensions of the bacterium Pseudomonas aeruginosa PA14ΔpelA indicate enhanced colloid mobilities and apparently diffusive motion driven by interactions with the bacteria. However, inspection of individual trajectories of ∼500 particles reveals prolonged, directed displacements inconsistent with purely hydrodynamic interactions between swimming bacteria and colloids. Analysis of the properties of colloid paths indicates trajectories can be sorted into four distinct categories, including diffusive, persistent, curly, and mixed trajectory types. Non-diffusive trajectories are the norm, comprising 2/3 of the observed trajectories. Imaging of colloids in the interface reveals anisotropic assemblies formed by colloids decorated with one or more adhered bacteria that drive the colloids along these paths. The trajectories and enhanced transport result from individual colloids being moved as cargo by these adhered bacteria. The implications of these structures and open questions for interfacial transport are discussed and related to the active colloid literature.


Assuntos
Movimento , Pseudomonas aeruginosa/fisiologia , Aderência Bacteriana , Difusão , Modelos Biológicos
16.
Soft Matter ; 14(33): 6867-6874, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30079410

RESUMO

Boundaries play an important role in the emergence of nematic order in classical liquid crystal systems; we explore their importance in adhesive cells that form active nematics. In particular, we study how cells are affected by an edge, which in our experiments is a boundary between adhesive and non-adhesive domains on a planar surface. We find that such edges induce elongation and direct the migration of isolated fibroblasts. In confluent monolayers, these elongated cells co-align and migrate to form an active, two-dimensional nematic structure in which edges enforce planar alignment and provide local slip to streams of cells that move along them. On an adhesive square island of dimensions 1 mm × 1 mm, cells near the edges in confluent nematic monolayers have enhanced alignment and velocity. The corners of the adhesive island seed defects with signs that depend on the direction of the motion of the streams of cells that meet there. Distortions emerge with rotations of -π/2 to form a -1/4 defect for streams that move clockwise or counterclockwise, and +π/2 to form a +1/4 defect for converging streams. We explore how cells transmit alignment information to each other in the absence of an edge by studying cell pairs and find that while such pairs do co-align, this alignment is only transient and short lived. These results shed light on the importance of edges in imposing nematic order in confluent monolayers and how edges can be used as tools to pattern the long-range organization of cells for tissue engineering applications.

17.
Soft Matter ; 14(5): 861-862, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29350228

RESUMO

Correction for 'Films of bacteria at interfaces: three stages of behaviour' by Liana Vaccari et al., Soft Matter, 2015, 11, 6062-6074.

18.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37290082
19.
Proc Natl Acad Sci U S A ; 112(50): 15291-6, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621729

RESUMO

Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole-dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully "locked," allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM.

20.
Proc Natl Acad Sci U S A ; 112(20): 6336-40, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941380

RESUMO

Rod-like colloids distort fluid interfaces and interact by capillarity. We explore this interaction at the free surface of aligned nematic liquid crystal films. Naive comparison of capillary and elastic energies suggests that particle assembly would be determined solely by surface tension. Here, we demonstrate that, under certain circumstances, the capillary and elastic effects are complementary and each plays an important role. Particles assemble end-to-end, as dictated by capillarity, and align along the easy axis of the director field, as dictated by elasticity. On curved fluid interfaces, however, curvature capillary energies can overcome the elastic orientations and drive particle migration along curvature gradients. Domains of dominant interaction and their transition are investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA