Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(15): 10998-11002, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39014960

RESUMO

Lithium iodide enables regioconvergent C-F bond functionalization of isomeric Morita-Baylis-Hillman fluorides with carbon, sulfur, and nitrogen nucleophiles. The defluorinative carbon-carbon and carbon-heteroatom bond formations give multifunctional compounds in excellent yields and with good to high diastereoselectivities at room temperature. The possibility of catalytic enantioselective allylation is also discussed.

2.
Chirality ; 35(9): 619-624, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37129272

RESUMO

Fluorinated oxindoles are frequently used building blocks in asymmetric synthesis and represent an important scaffold found in a variety of biologically relevant compounds. While it is understood that incorporation of fluorine atoms into organic molecules can improve their pharmacological properties, the impact on the configurational stability of chiral organofluorines is still underexplored. In this study, semipreparative HPLC enantioseparations of five oxindoles were carried out, and the resulting enantiomerically enriched solutions were used to investigate base promoted racemization kinetics at room temperature. It was found that incorporation of fluorine at the chiral center increases the configurational stability, while substitutions on the aromatic ring and at the lactam moiety also have significant effects on the rate of racemization, which generally follows reversible first-order reaction kinetics.

3.
Chirality ; 33(12): 891-898, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34598313

RESUMO

The 2-Aryl-2-fluoroacetonitriles have garnered increasing interest as versatile building blocks in asymmetric synthesis. However, the configurational stability of these organofluorines is poorly understood and analytical methods that can be used to differentiate between their enantiomers remain underdeveloped. In this study, baseline high performance liquid chromatography (HPLC) enantioseparation of ten 2-aryl-2-fluoroacetonitriles was achieved by screening frequently used chiral stationary phases. While Chiralcel OD, Chiralpak AD, and Chiralpak AS proved to be most broadly useful, preparative separation of the enantiomers of 2-(2-naphthyl)-2-fluoroacetonitrile was possible on Chiralcel OJ. This enabled racemization studies at various temperatures and in the presence of organic bases which showed that this compound is configurationally stable under neutral conditions upon heating to 130°C for 6 h but undergoes complete racemization within 10 h in the presence of stoichiometric amounts of a guanidine base at room temperature. The racemization is likely to proceed via formation of an achiral keteniminate intermediate and obeys reversible first-order reaction kinetics with a half-life time of 87.7 min in ethanolic hexanes at 23.2°C. Racemization is significantly slower and occurs with a half-life time of 23.1 h at 22.4°C when the guanidine is replaced with a weaker amidine base.


Assuntos
Hexanos , Cromatografia Líquida de Alta Pressão , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA