Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 42(4): 1261-1299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34859467

RESUMO

Mass-spectrometry coupled to liquid chromatography is an indispensable tool in the field of proteomics. In the last decades, more and more complex and diverse biochemical and biomedical questions have arisen. Problems to be solved involve protein identification, quantitative analysis, screening of low abundance modifications, handling matrix effect, and concentrations differing by orders of magnitude. This led the development of more tailored protocols and problem centered proteomics workflows, including advanced choice of experimental parameters. In the most widespread bottom-up approach, the choice of collision energy in tandem mass spectrometric experiments has outstanding role. This review presents the collision energy optimization strategies in the field of proteomics which can help fully exploit the potential of MS based proteomics techniques. A systematic collection of use case studies is then presented to serve as a starting point for related further scientific work. Finally, this article discusses the issue of comparing results from different studies or obtained on different instruments, and it gives some hints on methodology transfer between laboratories based on measurement of reference species.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida
2.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562082

RESUMO

The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass spectrometry (MS/MS) is challenging due to the lability of the O-glycosidic bond and the appearance of MS/MS fragment ions with little structural information. Therefore, we aimed to investigate the optimal fragmentation conditions that suppress the prevalent dissociation of the anthracycline drug and provide good sequence coverage. In this study, we comprehensively compared the performance of common fragmentation techniques, such as higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron-transfer higher energy collisional dissociation (EThcD) and matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) activation methods for the structural identification of synthetic daunomycin-peptide conjugates by high-resolution tandem mass spectrometry. Our results showed that peptide backbone fragmentation was inhibited by applying electron-based dissociation methods to conjugates, most possibly due to the "electron predator" effect of the daunomycin. We found that efficient HCD fragmentation was largely influenced by several factors, such as amino acid sequences, charge states and HCD energy. High energy HCD and MALDI-TOF/TOF combined with collision induced dissociation (CID) mode are the methods of choice to unambiguously assign the sequence, localize different conjugation sites and differentiate conjugate isomers.


Assuntos
Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Daunorrubicina/química , Transporte de Elétrons , Peptídeos/química , Conformação Proteica
3.
Molecules ; 24(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744143

RESUMO

Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE⁺) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE⁺/EE-) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users.


Assuntos
Estrutura Molecular , Compostos Orgânicos/química , Espectrometria de Massas por Ionização por Electrospray , Software , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem
4.
Rapid Commun Mass Spectrom ; 32(11): 844-850, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29575159

RESUMO

RATIONALE: Protein citrullination (deimination) is a post-translational modification of proteins converting arginine(s) into citrulline(s). "Overcitrullination" could be associated with severe pathological conditions. Mass spectrometric analysis of modified proteins is hindered by several problems. A comprehensive study of the fragmentation of deiminated peptides is not yet available. In this paper we have made an attempt to describe the characteristics of these processes, based on the studies of epitope model oligopeptides derived from clinically relevant proteins. METHODS: Solutions of purified model peptides containing either one or two citrulline residues as well as their native variants were injected directly into the electrospray source of a high accuracy and resolution quadrupole-time-of-flight instrument and were analysed by tandem mass spectrometry using low-energy collision-induced dissociation. RESULTS: Loss of isocyanic acid from citrulline residues is a preferred fragmentation route for deiminated peptides, which yields ornithine residues in the sequence. However, simultaneous detection of both the isocyanic acid loss and sequence fragments is often compromised. A preferential cleavage site was observed between citrulline and any other following amino acids yielding intensive complementary b- and y-type ions. Also, citrulline positioned at the C-termini displays a preferential cleavage N-terminal to this residue yielding characteristic y1 ions. These phenomena are described here for the first time and are referred to as the "citrulline effect". CONCLUSIONS: We found that the citrulline effect is very pronounced and could be used as a complementary tool for the confirmation of modification sites in addition to losses of isocyanic acids from the protonated molecules or from fragment ions. Low collision energy applied to peptide ions having partially mobile protons reveals the site of modification by generating specific and intensive fragments of the sequence. On the other hand, fragmenting precursor ions with mobile protons usually allows full sequence coverage, although citrulline-specific fragments may exhibit lower intensities compared to other fragments.


Assuntos
Citrulina/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Artrite Reumatoide/imunologia , Epitopos/química , Humanos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
J Am Soc Mass Spectrom ; 34(8): 1569-1575, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37414397

RESUMO

Peptide identification by positive electrospray ionization (ES+) tandem mass spectrometry (MS/MS) is a well-established strategy in proteomics. Several research groups reported the usefulness of negative electrospray ionization (ES-) for gaining complementary structural information on peptides and their post-translational modifications (PTM) compared to ES+. Fragmentation of citrullinated peptides has not been previously explored in ES-. In this study, 9 peptides containing citrulline residues were investigated in ES- by stepwise collision energy-dependent measurements on a QTOF instrument and a Q-Orbitrap instrument. Our results of high resolution and mass accuracy show the favored citrulline-selective loss of HNCO from these peptide precursors and their fragments─similarly to that in ES+─along with y-NH3/z, c, c-NH3/b sequence ions. Loss of HNCO from citrullinated peptides in ES- and a proposed mechanism for the reaction have been described here for the first time. HNCO loss intensities from precursors were generally even higher than that in ES+. Interestingly, the most intense fragments corresponded to neutral losses from sequence ions while intact sequence ions were usually minor components of the spectra. High-intensity ions related to cleavages N-terminal to Asp and Glu residues that have been previously reported were also observed. On the other hand, a relatively high number of peaks were observed, possibly due to internal fragmentation and/or scrambling events. While (ES-) MS/MS spectra always require manual inspection and the annotation may be ambiguous, the favorable loss of HNCO and the preferable cleavage N-terminal to Asp residues can be used to differentiate between citrullinated/deamidated sequences.


Assuntos
Citrulina , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Citrulina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/química , Ânions , Íons
6.
J Am Soc Mass Spectrom ; 33(7): 1176-1186, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621259

RESUMO

The use of tandem mass spectrometry (MS/MS) is a fundamental prerequisite of reliable protein identification and quantification in mass-spectrometry-based proteomics. In bottom-up and middle-down proteomics, proteins are identified by the characteristic fragments of their constituting peptides. Post-translational modifications (PTMs) often further complicate proteome analyses. Citrullination is an increasingly studied PTM converting arginines to citrullines (Cit, X) and is implicated in several autoimmune and neurological diseases as well as different types of cancer. Confirmation of citrullination is known to be very challenging since it results in the same molecular mass change as Asn/Gln deamidation. In this study, we explore which MS/MS characteristics can be used for the reliable identification of citrullination. We synthesized several peptides incorporating Cit residues that model enzymatic cleavages of different proteins with verified or putative citrullination. Collision-induced dissociation was used to investigate the energy dependence of Byonic and Mascot scores and confirmed sequence coverage (CSC) along with the neutral loss of HNCO characteristic to citrulline side chains. We found that although the recommended values (19-45 V) for ramped collision energy settings cover the optimal Mascot, Byonic, or %CSC scores effectively, the diagnostic HNCO loss from precursors and fragments may reach their maximum intensities at lower and higher collision energies, respectively. Therefore, we suggest broadening the ramp range to ∼5-60 V to obtain more favorable identification rates for citrullinated peptides. We also found that Byonic was more successful in correctly identifying citrullinated peptides with deamidated residues than Mascot.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Citrulina/química , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
7.
J Am Soc Mass Spectrom ; 31(8): 1744-1750, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32559094

RESUMO

Posttranslational modifications of proteins like citrullination and carbamylation are associated with several diseases. Detailed analytical characterization of citrullinated and carbamylated proteins or peptides could be difficult due to the low concentration of the analytes in complex biological samples. High structural similarity and chemical behavior of citrullinated and carbamylated residues also pose a challenge. We previously reported the "citrulline effect" phenomenon that is manifested in the generation of intense y type ions originating from Cit-Zzz amide bond scissions in collision-induced dissociation tandem mass spectra of citrullinated tryptic peptides. In this study, we created a rigorous tryptic-like model system of both citrulline and homocitrulline-containing peptides that included appropriate and well-defined controls and fragment analogues to quantify the citrulline effect and investigate whether there is an effect for homocitrulline residues as well. Our results show that citrulline residues significantly increased fragmentation at their C-terminus relatively independent of the identity of the following amino acid. In comparison, homocitrulline residues displayed inconclusive results at the same energies. However, the strength of effects was dependent on collision energy and the position of citrulline and homocitrulline in the sequences. As newer software algorithms tend to observe structure-intensity relationships during annotation, this finding increases reliable identification of modified proteins/peptides.


Assuntos
Citrulina/análogos & derivados , Citrulina/análise , Peptídeos/química , Cromatografia Líquida de Alta Pressão , Carbamilação de Proteínas , Espectrometria de Massas em Tandem/métodos
8.
J Am Soc Mass Spectrom ; 31(3): 565-573, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31967473

RESUMO

Tandem mass spectrometry is an indispensable tool in proteomics used for protein sequencing and quantitation. On the basis of the sequential fragments usually generated from peptide ions via collision-induced dissociation, electron-transfer dissociation, or a combination of the two, probabilistic database search engines could be used for the identification of the peptides. The correct localization of posttranslational modifications (PTMs) poses a more challenging problem than the general identification of proteins. Histones are involved in the regulation of DNA transcription via the wealth of PTMs on their N-terminal tail. In this study, we analyzed the histone H4 peptide SGRGK incorporating four different posttranslational modifications: citrullination, acetylation, phosphorylation, and arginine methylation at various positions. The pentapeptides model the enzymatic cleavage of the N-terminal tail of human histone H4 protein by LysC protease. Fragmentation of the peptides was investigated using higher-energy collisional dissociation (HCD), electron-transfer dissociation (ETD), and electron-transfer higher-energy collisional dissociation (EThcD) on an ultrahigh resolution and mass accuracy instrument. We found that while all three techniques have their unique characteristics, advantages, and pitfalls, EThcD generated the most fragment ion-rich spectra. Despite potential ambiguities regarding exact fragment identities, full sequence coverage and PTM mapping may also be achievable. We also found novel neutral losses from the charge-reduced precursors characteristic to citrullination in ETD and EThcD which may be used in proteomic applications. N-Terminal acetylation and arginine methylation could also be confirmed by their characteristic neutral losses from the charge-reduced precursors.


Assuntos
Citrulina/antagonistas & inibidores , Histonas/química , Oligopeptídeos/química , Acetilação , Humanos , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem
9.
J Am Soc Mass Spectrom ; 30(9): 1586-1591, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300976

RESUMO

Tandem mass spectrometry of peptides is of utmost importance in proteomics. Collision-induced dissociation usually generates y type fragment ion series from tryptic peptides, carrying information on their primary structure. Amino acid side chains or differences in their basicity could alter fragmentation processes considerably. The well-known proline effect is a cleavage preference at the N-terminus of proline residues in peptides, usually yielding a very abundant y ion while suppressing others. Previously, we reported a similar phenomenon occurring at the C-terminus of citrulline residues and coined the term Cit effect. To confirm the presence of Cit effect in large proteomic datasets, we analyzed 293 peptides containing Cit residues based on the human proteome database mining work of Lee et al. (2018). The occurrence of Cit effect was found to be 44%. Comparing bond scissions at the amide linkage between Cit-Zzz (citrulline followed by a specified residue) to Aaa1-Aaa2 (Aaa can be any residue except Cit), 5 Cit-Zzz cleavages were significantly (CL = 95.0%) more frequent in > 85% of the cases in terms of relative sequential base beak occurrence. We used Pro effect to compare with Cit effect and obtained very similar results. On the other hand, our study showed that Cit effect is slightly inferior in the overall incidence to Pro effect (50% vs. 33%, CL = 95%) among deiminated peptides when Pro residues were also present in the sequence. Our results suggest that Cit effect is a characteristic feature and a possible biasing factor of deiminated peptides which can confirm the position of citrullination sites.


Assuntos
Citrulina/química , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Humanos , Peptídeos/metabolismo , Prolina/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA