Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39282345

RESUMO

Epithelial cell cohesion and barrier function critically depend on α -catenin, an actin-binding protein and essential constituent of cadherin-catenin-based adherens junctions. α -catenin undergoes actomyosin force-dependent unfolding of both actin-binding and middle domains to strongly engage actin filaments and its various effectors, where this mechanosensitivity is critical for adherens junction function. We previously showed that α -catenin is highly phosphorylated in an unstructured region that links mechanosensitive middle- and actin-binding domains (known as the P-linker region), but the cellular processes that promote α -catenin phosphorylation have remained elusive. Here, we leverage a previously published phosphor-proteomic data set to show that the α -catenin P-linker region is maximally phosphorylated during mitosis. By reconstituting α -catenin Crispr KO MDCK with wild-type, phospho- mutant and mimic forms of α -catenin, we show that full phosphorylation restrains mitotic cell rounding in the apical direction, strengthening interactions between dividing and non-dividing neighbors to limit epithelial barrier leak. Since major scaffold components of adherens junctions, tight junctions and desmosomes are also differentially phosphorylated during mitosis, we reason that epithelial cell division may be a tractable system to understand how junction complexes are coordinately regulated to sustain barrier function under tension-generating morphogenetic processes.

2.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453366

RESUMO

The recently discovered HAPSTR1 protein broadly oversees cellular stress responses. This function requires HUWE1, a ubiquitin ligase that paradoxically marks HAPSTR1 for degradation, but much about this pathway remains unclear. Here, leveraging multiplexed proteomics, we find that HAPSTR1 enables nuclear localization of HUWE1 with implications for nuclear protein quality control. We show that HAPSTR1 is tightly regulated and identify ubiquitin ligase TRIP12 and deubiquitinase USP7 as upstream regulators titrating HAPSTR1 stability. Finally, we generate conditional Hapstr1 knockout mice, finding that Hapstr1-null mice are perinatal lethal, adult mice depleted of Hapstr1 have reduced fitness, and primary cells explanted from Hapstr1-null animals falter in culture coincident with HUWE1 mislocalization and broadly remodeled signaling. Notably, although HAPSTR1 potently suppresses p53, we find that Hapstr1 is essential for life even in mice lacking p53. Altogether, we identify novel components and functional insights into the conserved HAPSTR1-HUWE1 pathway and demonstrate its requirement for mammalian life.


Assuntos
Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Animais , Camundongos , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA