Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 375, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878165

RESUMO

The selection of oleaginous bacteria, potentially applicable to biotechnological approaches, is usually carried out by different expensive and time-consuming techniques. In this study, we used Oil Red O (ORO) as an useful dye for staining of neutral lipids (triacylglycerols and wax esters) on thin-layer chromatography plates. ORO could detect minimal quantities of both compounds (detection limit, 0.0025 mg of tripalmitin or 0.005 mg of cetylpalmitate). In addition, we developed a specific, rapid, and inexpensive screening methodology to detect triacylglycerol-accumulating microorganisms grown on the agar plate. This staining methodology detected 9/13 strains with a triacylglycerol content higher than 20% by cellular dry weight. ORO did not stain polyhydroxyalkanoates-producing bacteria. The four oleaginous strains not detected by this screening methodology exhibited a mucoid morphology of their colonies. Apparently, an extracellular polymeric substance produced by these strains hampered the entry of the lipophilic dye into cells. The utilization of the developed screening methodology would allow selecting of oleaginous bacteria in a simpler and faster way than techniques usually used nowadays, based on unspecific staining protocols and spectrophotometric or chromatographic methods. Furthermore, the use of ORO as a staining reagent would easily characterize the neutral lipids accumulated by microorganisms as reserve compounds. KEY POINTS: • Oil Red O staining is specific for triacylglycerols • Oil Red O staining is useful to detect oleaginous bacteria • Fast and inexpensive staining to isolate oleaginous bacteria from the environment.


Assuntos
Compostos Azo , Bactérias , Coloração e Rotulagem , Triglicerídeos , Cromatografia em Camada Fina , Coloração e Rotulagem/métodos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/química , Compostos Azo/metabolismo , Compostos Azo/química , Triglicerídeos/metabolismo , Triglicerídeos/análise , Técnicas Bacteriológicas/métodos
2.
Appl Microbiol Biotechnol ; 108(1): 264, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489042

RESUMO

Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Proteínas de Bactérias , Engenharia Tecidual/métodos , Glutaral , Reagentes de Ligações Cruzadas/química
3.
Appl Environ Microbiol ; 89(1): e0142822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541797

RESUMO

The number of genes encoding ß-oxidation enzymes in Cupriavidus necator H16 (synonym, Ralstonia eutropha H16) is high, but only the operons A0459-A0464 and A1526-A1531, each encoding four genes for ß-oxidation enzymes, were expressed during growth with long-chain-length fatty acids (LCFAs). However, we observed that C. necator ΔA0459-A0464 ΔA1526-A1531 and C. necator H16 showed the same growth behavior during growth with decanoic acid and shorter FAs. The negative effect of the deletion of these two operons increased with an increasing chain length of the utilized FAs. Transcriptome sequencing (RNA-Seq) revealed the expression profiles of genes involved in the catabolism of medium-chain-length fatty acids (MCFAs) in C. necator H16. Operon A0459-A0464 was expressed only during growth with nonanoic acid, whereas operon A1526-A1531 was highly expressed during growth with octanoic and nonanoic acid. The gene clusters B1187-B1192 and B0751-B0759 showed a log2 fold change in expression of up to 4.29 and 4.02, respectively, during growth with octanoic acid and up to 8.82 and 5.50, respectively, with nonanoic acid compared to sodium gluconate-grown cells. Several acyl-CoA ligases catalyze the activation of MCFAs with coenzyme A (CoA), but fadD3 (A3288), involved in activation of LCFAs, was not detected. The expression profiles of C. necator strain ΔA0459-A0464 ΔA1526-A1531 showed that the growth with nonanoic acid resulted in the expression of further ß-oxidation enzyme-encoding genes. Additional insights into the transport of FAs in C. necator H16 revealed the complexity and putative involvement of the DegV-like protein encoded by A0463 in the transport of odd-chain-length FAs and of siderophore biosynthesis in the transport mechanism. IMPORTANCE Although Cupriavidus necator H16 has been used in several studies to produce polyhydroxyalkanoates from various lipids, the fatty acid metabolism is poorly understood. The ß-oxidation of long-chain-length FAs has been investigated, but the tremendous number of homologous genes encoding ß-oxidation enzymes hides the potential for variances in the expressed genes for catabolism of shorter FAs. The catabolism of medium-chain-length FAs and connected pathways has not been investigated yet. As more sustainable substrates such as lipids and the production of fatty acids and fatty acid derivates become more critical with the dependency on fossil-based substances, understanding the complex metabolism in this highly diverse workhorse for biotechnology, C. necator, is inevitable. For further metabolic engineering and construction of production strains, we investigated the metabolism during growth on medium-chain-length FAs by RNA-Seq.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cupriavidus necator/metabolismo , Transcriptoma , Ácidos Graxos/metabolismo , Poli-Hidroxialcanoatos/metabolismo
4.
Appl Environ Microbiol ; 88(2): e0187321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731045

RESUMO

Many homologous genes encoding ß-oxidation enzymes have been found in the genome of Cupriavidus necator H16 (synonym Ralstonia eutropha H16). By proteome analysis, the degradation of adipic acid was investigated and showed differences from the degradation of hexanoic acid. During ß-oxidation of adipic acid, activation with coenzyme A (CoA) is catalyzed by the two-subunit acyl-CoA ligase encoded by B0198 and B0199. The operon is completed by B0200 encoding a thiolase catalyzing the cleavage of acetyl-CoA at the end of the ß-oxidation cycle. C. necator ΔB0198-B0200 strain showed improved growth on adipic acid. Potential substitutes are B1239 for B0198-B0199 and A0170 as well as A1445 for B0200. A deletion mutant without all three thiolases showed diminished growth. The deletion of detected acyl-CoA dehydrogenase encoded by B2555 has an altered phenotype grown with sebacic acid but not adipic acid. With hexanoic acid, acyl-CoA dehydrogenase encoded by B0087 was detected on two-dimensional (2D) gels. Both enzymes are active with adipoyl-CoA and hexanoyl-CoA as substrates, but specific activity indicates a higher activity of B2555 with adipoyl-CoA. 2D gels, growth experiments, and enzyme assays suggest the specific expression of B2555 for the degradation of dicarboxylic acids. In C. necator H16, the degradation of carboxylic acids potentially changes with an increasing chain length. Two operons involved in growth with long-chain fatty acids seem to be replaced during growth on medium-chain carboxylic acids. Only two deletion mutants showed diminished growth. Replacement of deleted genes with one of the numerous homologous is likely. IMPORTANCE The biotechnologically interesting bacterium Cupriavidus necator H16 has been thoroughly investigated. Fifteen years ago, it was sequenced entirely and annotated (A. Pohlmann, W. F. Fricke, F. Reinecke, B. Kusian, et al., Nat Biotechnol 24:1257-1262, 2006, https://doi.org/10.1038/nbt1244). Nevertheless, the degradation of monocarboxylic fatty acids and dicarboxylic acids has not been elucidated completely. C. necator is used to produce value-added products from affordable substrates. One of our investigations' primary targets is the biotechnological production of organic acids with different and specific chain lengths. The versatile metabolism of carboxylic acids recommends C. necator H16 as a candidate for producing value-added organic products. Therefore, the metabolism of these compounds is of interest, and, for different applications in industry, understanding such central metabolic pathways is crucial.


Assuntos
Cupriavidus necator , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cupriavidus necator/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo
5.
Appl Microbiol Biotechnol ; 106(7): 2541-2555, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35325274

RESUMO

While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF, glycerol kinase glpK, and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO2) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. KEY POINTS: • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization.


Assuntos
Aquaporinas , Cupriavidus necator , Proteínas de Escherichia coli , Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456918

RESUMO

Despite the recent advancements in treating bacterial infections, antibiotic resistance (AR) is still an emerging issue. However, polymeric nanocarriers have offered unconventional solutions owing to their capability of exposing more functional groups, high encapsulation efficiency (EE) and having sustained delivery. Natural polymeric nanomaterials (NMs) are contemplated one of the most powerful strategies in drug delivery (DD) in terms of their safety, biodegradability with almost no side effects. Every nanostructure is tailored to enhance the system functionality. For example, cost-effective copper NPs could be generated in situ in cellulose sheets, demonstrating powerful antibacterial prospects for food safety sector. Dendrimers also have the capacity for peptide encapsulation, protecting them from proteolytic digestion for prolonged half life span. On the other hand, the demerits of naturally sourced polymers still stand against their capacities in DD. Hence, Post-synthetic modification of natural polymers could play a provital role in yielding new hybrids while retaining their biodegradability, which could be suitable for building novel super structures for DD platforms. This is the first review presenting the contribution of natural polymers in the fabrication of eight polymeric NMs including particulate nanodelivery and nanofabrics with antibacterial and antibiofilm prospects, referring to modified polymer derivatives to explore their full potential for obtaining sustainable DD products.


Assuntos
Infecções Bacterianas , Nanoestruturas , Antibacterianos/química , Antibacterianos/farmacologia , Celulose , Humanos , Nanoestruturas/química , Polímeros/química
7.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328756

RESUMO

The three-dimensional structure of tyrosinase has been crystallized from many species but not from Homo sapiens. Tyrosinase is a key enzyme in melanin biosynthesis, being an important target for melanoma and skin-whitening cosmetics. Several studies employed the structure of tyrosinase from Agaricus bisporus as a model enzyme. Recently, 98% of human genome proteins were elucidated by AlphaFold. Herein, the AlphaFold structure of human tyrosinase and the previous model were compared. Moreover, tyrosinase-related proteins 1 and 2 were included, along with inhibition studies employing kojic and cinnamic acids. Peptides are widely studied for their inhibitory activity of skin-related enzymes. Cyanophycin is an amino acid polymer produced by cyanobacteria and is built of aspartic acid and arginine; arginine can be also replaced by other amino acids. A new set of cyanophycin-derived dipeptides was evaluated as potential inhibitors. Aspartate-glutamate showed the strongest interaction and was chosen as a leading compound for future studies.


Assuntos
Dipeptídeos , Monofenol Mono-Oxigenase , Arginina , Proteínas de Bactérias , Dipeptídeos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo
8.
Appl Microbiol Biotechnol ; 105(9): 3733-3743, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900422

RESUMO

3,3'-Thiodipropionic acid (TDP) is an antioxidant, which can be used as precursor carbon source to synthesize polythioesters. The bacterium Variovorax paradoxus TBEA6 strain can use TDP as a single source of carbon and energy. In the present study, experiments were carried out to identify proteins involved in the transport of TDP into the cells of strain TBEA6. Hence, eight putative tctC genes, which encode for the TctC proteins, were amplified from genomic DNA of TBEA6 strain using polymerase chain reaction and expressed in E. coli BL21 cells. Cells were grown in auto-induction medium, and protein purification was done using His Spin Trap affinity columns. Purity and molecular weight of each protein were confirmed by SDS-PAGE analysis. Protein-ligand interactions were monitored in thermoshift assays using the real-time PCR system. Two TctC proteins (locus tags VPARA-44430 and VPARA-01760) out of eight proteins showed a significant shift in their melting temperatures when they interact with the ligand (TDP or gluconate). The responsible genes were deleted in the genome of TBEA6 using suicide plasmid pJQ200mp18Tc, and single deletion mutants of the two candidate genes were subsequently generated. Finally, growth of the wild-type strain (TBEA6) and the two mutant strains (ΔVPARA-44430 and ΔVPARA-01760) were monitored and compared using TDP or gluconate as carbon sources. Wild type strains were successfully grown with TDP or gluconate. From the two mutant strains, one (ΔVPARA-44430) was unable to grow with TDP indicating that the tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.Key Points• Putative tctC genes from V. paradoxus TBEA6 were heterologously expressed in E. coli.• Protein-ligand interactions monitored in thermoshift assays using the real-time PCR.• tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.


Assuntos
Proteínas de Transporte , Comamonadaceae , Comamonadaceae/genética , Escherichia coli/genética , Propionatos
9.
Biodegradation ; 32(2): 113-125, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33677743

RESUMO

The enzymatic degradation of the rubber polymer poly(cis-1,4-isoprene), e.g. by the latex clearing protein Lcp1VH2 of Gordonia polyisoprenivorans VH2 has been demonstrated with latex milk or pure isoprene-rubber particles, recently. Unfortunately, carbon black filled vulcanized rubber (CFVR) making the biggest part of worldwide rubber wastes, contains several harmful additives making microbial and enzymatic rubber degradation challenging. However, this study demonstrates the successful enzymatic cleavage of industrially produced CFVR. The formation of the cleavage products, oligo(cis-1,4-isoprenoids), from incubating CFVR particles with Lcp1VH2 was detected by HPLC-MS. Various organic solvents were tested to remove harmful or inhibiting additives like antioxidants to enhance product formation. The pretreatment of CFVR particles, especially with chloroform or cyclohexane, significantly improved the degradation. It was also demonstrated that reducing the particles size and thus increasing the enzymatically accessible surface area of the particles led to a strong acceleration of the degradation process. Furthermore, ATR-IR analyses showed that Lcp1VH2 led to the functionalization of the rubber particle surface with carbonyl groups by cleaving isoprene chains, still linked to the particle. Both, the oligo(cis-1,4-isoprenoids) as well as the functionalized rubber particles, are potentially important products, which can be reused as fine chemicals or as additives in rubber production. The present study, showing the enzymatic degradation of common CFVR for the first time, takes an important step towards a new way of rubber waste disposal and indicates the economic feasibility of an efficient and environmentally friendly recycling process by using the rubber oxygenase Lcp1VH2.


Assuntos
Actinobacteria , Bactéria Gordonia , Biodegradação Ambiental , Látex
10.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680858

RESUMO

The biotin metabolism of the Gram-negative facultative chemolithoautotrophic bacterium Ralstonia eutropha (syn. Cupriavidus necator), which is used for biopolymer production in industry, was investigated. A biotin auxotroph mutant lacking bioF was generated, and biotin depletion in the cells and the minimal biotin demand of a biotin-auxotrophic R. eutropha strain were determined. Three consecutive cultivations in biotin-free medium were necessary to prevent growth of the auxotrophic mutant, and 40 ng/ml biotin was sufficient to promote cell growth. Nevertheless, 200 ng/ml biotin was necessary to ensure growth comparable to that of the wild type, which is similar to the demand of biotin-auxotrophic mutants among other prokaryotic and eukaryotic microbes. A phenotypic complementation of the R. eutropha ΔbioF mutant was only achieved by homologous expression of bioF of R. eutropha or heterologous expression of bioF of Bacillus subtilis but not by bioF of Escherichia coli Together with the results from bioinformatic analysis of BioFs, this leads to the assumption that the intermediate of biotin synthesis in R. eutropha is pimeloyl-CoA instead of pimeloyl-acyl carrier protein (ACP) like in the Gram-positive B. subtilis Internal biotin content was enhanced by homologous expression of accB, whereas homologous expression of accB and accC2 in combination led to decreased biotin concentrations in the cells. Although a DNA-binding domain of the regulator protein BirA is missing, biotin synthesis seemed to be influenced by the amount of acceptor protein present.IMPORTANCERalstonia eutropha is applied in industry for the production of biopolymers and serves as a research platform for the production of diverse fine chemicals. Due to its ability to grow on hydrogen and carbon dioxide as the sole carbon and energy source, R. eutropha is often utilized for metabolic engineering to convert inexpensive resources into value-added products. The understanding of the metabolic pathways in this bacterium is mandatory for further bioengineering of the strain and for the development of new strategies for biotechnological production.


Assuntos
Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Biotina/metabolismo , Cupriavidus necator/enzimologia , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cupriavidus necator/genética , Escherichia coli/metabolismo , Redes e Vias Metabólicas
11.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444473

RESUMO

A cAMP receptor protein (CRPVH2) was detected as a global regulator in Gordonia polyisoprenivorans VH2 and was proposed to participate in the network regulating poly(cis-1,4-isoprene) degradation as a novel key regulator. CRPVH2 shares a sequence identity of 79% with GlxR, a well-studied global regulator of Corynebacterium glutamicum Furthermore, CRPVH2 and GlxR have a common oligomerization state and similar binding motifs, and thus most likely have similar functions as global regulators. Size exclusion chromatography of purified CRPVH2 confirmed the existence as a homodimer with a native molecular weight of 44.1 kDa in the presence of cAMP. CRPVH2 bound to the TGTGAN6TCACT motif within the 131-bp intergenic region of divergently oriented lcp1VH2 and lcpRVH2, encoding a latex clearing protein and its putative repressor, respectively. DNase I footprinting assays revealed the exact operator size of CRPVH2 in the intergenic region (25 bp), which partly overlapped with the proposed promoters of lcpRVH2 and lcp1VH2 Our findings indicate that CRPVH2 represses the expression of lcpRVH2 while simultaneously directly or indirectly activating the expression of lcp1VH2 by binding the competing promoter regions. Furthermore, binding of CRPVH2 to upstream regions of additional putative enzymes of poly(cis-1,4-isoprene) degradation was verified in vitro. In silico analyses predicted 206 CRPVH2 binding sites comprising 244 genes associated with several functional categories, including carbon and peptide metabolism, stress response, etc. The gene expression regulation of several subordinated regulators substantiated the function of CRPVH2 as a global regulator. Moreover, we anticipate that the novel lcpR regulation mechanism by CRPs is widespread in other rubber-degrading actinomycetes.IMPORTANCE In order to develop efficient microbial recycling strategies for rubber waste materials, it is required that we understand the degradation pathway of the polymer and how it is regulated. However, only little is known about the transcriptional regulation of the rubber degradation pathway, which seems to be upregulated in the presence of the polymer. We identified a novel key regulator of rubber degradation (CRPVH2) that regulates several parts of the pathway in the potent rubber-degrader G. polyisoprenivorans VH2. Furthermore, we provide evidence for a widespread involvement of CRP regulators in the degradation of rubber in various other rubber-degrading actinomycetes. Thus, these novel insights into the regulation of rubber degradation are essential for developing efficient microbial degradation strategies for rubber waste materials by this group of actinomycetes.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Hemiterpenos/metabolismo , Látex/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteína Receptora de AMP Cíclico/metabolismo
12.
Appl Microbiol Biotechnol ; 104(17): 7367-7376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681242

RESUMO

A Gram-positive rubber-degrading bacterium, Actinoplanes sp. strain OR16 (strain NBRC 114529), is able to grow on agar plates containing natural and synthetic rubber as the sole sources of carbon and energy. When this strain was grown on natural rubber latex overlay agar plates, translucent halos around the cells were observed. To identify the natural rubber degradation genes and other features of its metabolism, its complete genome sequence was determined. The genome of OR16 consists of 9,293,892 bp and comprises one circular chromosome (GenBank accession number AP019371.1) with a G + C content of 70.3%. The genome contains 8238 protein-coding and 18 rRNA genes. A homology search of the genome sequence revealed that three genes (lcp1, lcp2, and lcp3) are homologous to an extracellular latex-clearing protein (Lcp) of Streptomyces sp. K30. RT-PCR analysis revealed that lcp1 and lcp2 seem to constitute an operon. Purified lcp gene products have oxygen consumption activity toward natural rubber latex, suggesting that all these genes encode rubber-degrading enzymes in OR16. Quantitative reverse transcription-PCR analysis indicated that the transcription of these genes is induced during the growth of OR16 on natural rubber. The genes located adjacent to lcp1 and lcp3, which code for a TetR/AcrR-type transcriptional regulator, can bind to the promoter regions of these lcp genes. It is suggested that the putative regulators play a role in regulating the transcription of the lcp genes. These results strongly suggested that three lcp genes are required for the utilization of natural rubber in strain OR16. Key Points • The complete genome sequence of Actinoplanes sp. strain OR16 was determined. • Three lcp genes which are involved in the natural rubber degradation in OR16 were identified. • Transcription of these lcp genes is induced during utilization of rubber in OR16. • Two regulators, which bind to the promoter regions of lcp, were determined.


Assuntos
Actinoplanes , Streptomyces , Proteínas de Bactérias/genética , Látex
13.
Appl Microbiol Biotechnol ; 104(6): 2745, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016490

RESUMO

There is an error in the Original Publication of this paper for "Acknowledgements" section was missing.

14.
Microbiology (Reading) ; 165(3): 343-354, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30628882

RESUMO

Gordonia polyisoprenivorans VH2 harbours two latex clearing proteins, which are responsible for the cleavage of poly(cis-1,4-isoprene) into oligoisoprenes, thereby allowing growth in presence of, e.g. natural rubber. A gene coding for a putative regulator of the TetR-family (lcpRVH2) is located 131 bp upstream of lcp1VH2. We heterologously expressed lcpRVH2 in Escherichia coli, and purified and characterized the protein with respect to its ability to bind to the operator region of lcp1VH2. LcpRVH2 forms a dimer in its native state. The size of the dimer was determined to be 52.7 kDa by size exclusion chromatography, whereas the calculated size of a monomer was 24.1 kDa. Electrophoretic mobility shift assays (EMSAs) with the purified protein revealed a shift upon binding to the intergenic region between lcpRVH2 and lcp1VH2. Within this region, an inverted repeat was identified in silico, probably being the binding site of LcpRVH2. This binding sequence was confirmed by a DNase I footprinting assay. A shift also occurred in EMSAs with this 44 bp sequence only. Interestingly, no regulator was detected upstream of the second lcp (lcp2VH2). Therefore, we performed EMSA studies with LcpRVH2 and the putative operator region upstream of lcp2VH2, and discovered by DNase I footprinting another binding sequence upstream of lcp2VH2. Hence, we concluded that LcpRVH2 binds the operator region of both lcps and, most likely, regulates their expression in G. polyisoprenivorans VH2.


Assuntos
Proteínas de Bactérias/metabolismo , Bactéria Gordonia/genética , Látex/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Biodegradação Ambiental , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Bactéria Gordonia/metabolismo , Hemiterpenos/metabolismo , Peso Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/isolamento & purificação
15.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540990

RESUMO

Bacteria using toxic chemicals, such as detergents, as growth substrates face the challenge of exposing themselves to cell-damaging effects that require protection mechanisms, which demand energy delivered from catabolism of the toxic compound. Thus, adaptations are necessary for ensuring the rapid onset of substrate degradation and the integrity of the cells. Pseudomonas aeruginosa strain PAO1 can use the toxic detergent sodium dodecyl sulfate (SDS) as a growth substrate and employs, among others, cell aggregation as a protection mechanism. The degradation itself is also a protection mechanism and has to be rapidly induced upon contact to SDS. In this study, gene regulation of the enzymes initiating SDS degradation in strain PAO1 was studied. The gene and an atypical DNA-binding site of the LysR-type regulator SdsB1 were identified and shown to activate expression of the alkylsulfatase SdsA1 initiating SDS degradation. Further degradation of the resulting 1-dodecanol is catalyzed by enzymes encoded by laoCBA, which were shown to form an operon. Expression of this operon is regulated by the TetR-type repressor LaoR. Studies with purified LaoR identified its DNA-binding site and 1-dodecanoyl coenzyme A as the ligand causing detachment of LaoR from the DNA. Transcriptional studies revealed that the sulfate ester detergent sodium lauryl ether sulfate (SLES) induced expression of sdsA1 and the lao operon. Growth experiments revealed an essential involvement of the alkylsulfatase SdsA1 for SLES degradation. This study revealed that the genes for the enzymes initiating the degradation of toxic sulfate-ester detergents are induced stepwise by a positive and a negative regulator in P. aeruginosa strain PAO1.IMPORTANCE Bacterial degradation of toxic compounds is important not only for bioremediation but also for the colonization of hostile anthropogenic environments in which biocides are being used. This study with Pseudomonas aeruginosa expands our knowledge of gene regulation of the enzymes initiating degradation of sulfate ester detergents, which occurs in many hygiene and household products and, consequently, also in wastewater. As an opportunistic pathogen, P. aeruginosa causes severe hygienic problems because of its pronounced biocide resistance and its metabolic versatility, often combined with its pronounced biofilm formation. Knowledge about the regulation of detergent degradation, especially regarding the ligands of DNA-binding regulators, may lead to the rational development of specific inhibitors for restricting growth and biofilm formation of P. aeruginosa in hygienic settings. In addition, it may also contribute to optimizing bioremediation strategies not only for detergents but also for alkanes, which when degraded merge with sulfate ester degradation at the level of long-chain alcohols.


Assuntos
Ésteres/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Dodecilsulfato de Sódio/metabolismo , Sulfatos/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Sulfatases/metabolismo
16.
Int Microbiol ; 22(4): 461-470, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31098825

RESUMO

To date, tripartite tricarboxylate transport (TTT) systems are not well characterized in most organisms. To investigate which carbon sources are transported by the TTT system of A. mimigardefordensis DPN7T, single deletion mutants were generated lacking either completely both sets of genes encoding for these transport systems tctABCDE1 and tctABDE2 in the organism or the two genes encoding for the regulatory components of the third chosen TTT system, tctDE3. Deletion of tctABCDE1 (MIM_c39170-MIM_c39210) in Advenella mimigardefordensis strain DPN7T led to inhibition of growth of the cells with citrate indicating that TctABCDE1 is the transport system for the uptake of citrate. Because of the negative phenotype, it was concluded that this deletion cannot be substituted by other transporters encoded in the genome of strain DPN7T. A triple deletion mutant of A. mimigardefordensis lacking both complete TTT transport systems and the regulatory components of the third chosen system (ΔTctABCDE1 ΔTctABDE2 ΔTctDE3) showed a leaky growth with α-ketoglutarate in comparison with the wild type. The other investigated TTT (TctABDE3, MIM_c17190-MIM_c17220) is most probably involved in the transport of α-ketoglutarate. Additionally, thermoshift assays with TctC1 (MIM_c39190) showed a significant shift in the melting temperature of the protein in the presence of citrate whereas no shift occurred with α-ketoglutarate. A dissociation constant Kd for citrate of 41.7 µM was determined. Furthermore, alternative α-ketoglutarate transport was investigated via in silico analysis.


Assuntos
Alcaligenaceae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Citratos/metabolismo , Alcaligenaceae/genética , Alcaligenaceae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Transporte Biológico , Proteínas de Transporte/genética , Deleção de Genes , Óperon
18.
Appl Microbiol Biotechnol ; 103(1): 143-157, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30397765

RESUMO

During the last decades, biopolymers experienced a renaissance. The increasing limitation of fossil resources in combination with a public demand for environmental-friendly and sustainable processes has led to the formation of a market for biobased plastics. Especially non-biodegradable bioplastics are very interesting materials, as they combine the benefits of reduced carbon footprint during production and increased resource efficiency with the persistence to microbial degradation. Consequently, persistent biomass-derived plastic materials are highly promising to substitute conventional fossil-based plastics in applications, which require durability and longevity. Non-biodegradable bioplastics derived from renewable resources represent 57% of all bioplastics with partially biobased polyethylene terephthalate currently leading the market, followed by biobased polyamides and fully biomass-derived polyethylene. An exceptional biopolymer with thermoplastic properties was discovered only two decades ago, when-for the first time-polythioesters were synthesized by microbial fermentation. Though synthesized by bacteria, it turned out that polythioesters are non-biodegradable by microorganisms in contrast to all other biopolymers and thus, represent a novel non-biodegradable bioplastic material. This review gives an overview about the recent development and progress regarding bioplastics with special focus on persistent bioplastics. We describe the generation of the respective monomers from biomass-derived substrates and summarize the current status of production, which range from the laboratory-scale up to large-scale industrial processes.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Biodegradação Ambiental , Biotecnologia/métodos , Biotecnologia/tendências , Plásticos/química , Plásticos/classificação , Plásticos/metabolismo
19.
Appl Microbiol Biotechnol ; 103(10): 4033-4043, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937497

RESUMO

Corynebacterium glutamicum was only examined in the early 2000s as a possible microorganism for the production of the polyamide cyanophycin (multi-L-arginyl-poly-[L-aspartic acid], CGP). CGP is a potential precursor for the synthesis of polyaspartic acid and CGP-derived dipeptides which may be of use in peptide-based clinical diets, as dietary supplements, or in livestock feeds. In the past, C. glutamicum was disregarded for CGP production due to low CGP contents and difficulties in isolating the polymer. However, considering recent advances in CGP research, the capabilities of this organism were revisited. In this study, several cyanophycin synthetases (CphA) as well as expression vectors and cultivation conditions were evaluated. The ability of C. glutamicum to incorporate additional amino acids such as lysine and glutamic acid was also examined. The strains C. glutamicum pVWEx1::cphAΔ1 and C. glutamicum pVWEx1::cphABP1 accumulated up to 14% of their dry weight CGP, including soluble CGP containing more than 40 mol% of the alternative side-chain amino acid lysine. The soluble, lysine-rich form of the polymer was not detected in C. glutamicum in previous studies. Additionally, an incorporation of up to 6 mol% of glutamic acid into the backbone of CGP synthesized by C. glutamicum pVWEx1::cphADh was detected. The strain accumulated up to 17% of its dry weight in soluble CGP. Although glutamic acid had previously been found to replace arginine in the side chain, this is the first time that glutamic acid was found to substitute aspartic acid in the backbone.


Assuntos
Proteínas de Bactérias/biossíntese , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico/metabolismo , Lisina/metabolismo , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Glutâmico/genética , Lisina/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Appl Microbiol Biotechnol ; 103(14): 5715-5726, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119350

RESUMO

Streptomyces coelicolor A3(2) is a rubber-degrading actinomycete that harbors one gene coding for a latex clearing protein (lcpA3(2)). Within the genome of S. coelicolor A3(2), we identified a gene coding for a novel protein of the TetR family (LcpRBA3(2)) downstream of lcpA3(2) and demonstrated its binding upstream of lcpA3(2). This indicates a role of LcpRBA3(2) in the regulation of lcp expression. LcpRBA3(2) shows no homology to LcpRVH2, a putative regulator of lcp expression in Gordonia polyisoprenivorans VH2. Additionally, LcpRVH2 homologs did not occur in the genome of S. coelicolor A3(2). Reverse transcriptase (RT) experiments showed that the expression of lcpA3(2) and lcpRBA3(2) is induced with poly(cis-1,4-isoprene) as sole carbon source. For further experiments, we heterologously expressed lcpRBA3(2) in Escherichia coli, purified the protein, and subsequently verified a binding of LcpRBA3(2) upstream of lcpA3(2). The operator site was examined by a DNase I footprinting assay: it comprises 31 bp and exhibits an inverted repeat of nine bases for the putative binding region. Interestingly, two N-terminal DNA-binding HTH domains of the TetR-type (PF00440) were identified within the sequence of LcpRBA3(2). The native molecular weight of LcpRBA3(2) was determined as 44 kDa by size exclusion chromatography which correlates to the molecular weight of a monomer. Normally, proteins of the TetR family occur as dimers so that the monomeric state is a novelty. Furthermore, LcpRBA3(2) homologs were identified in silico in several Lcp-containing actinomycetes, suspecting a conserved regulation mechanism. Apparently, the expression of lcps is regulated either by an LcpRB or by an LcpR.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Bactéria Gordonia/genética , Borracha/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA