Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(W1): W61-W64, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38726873

RESUMO

Creating pedigree charts is a recurring task in biomedical research, but there are few online tools for drawing complex human pedigrees available and even fewer are free. With DrawPed we aim to close this gap. DrawPed automatically draws pedigree charts from standard PED format pedigree files. Users can also create pedigrees from scratch and interactively edit existing pedigrees. The application can display conditions not captured in a PED file such as deceased persons or suspected consanguinity of parents. Pedigree charts are displayed as SVGs, which are scalable and hence publication-ready. Pedigrees can be exported as PED files for storage, exchange, or use in other applications. DrawPed is open source and freely available at https://www.genecascade.org/DrawPed/.


Assuntos
Linhagem , Software , Humanos , Gráficos por Computador , Consanguinidade
2.
Nucleic Acids Res ; 50(W1): W322-W329, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639768

RESUMO

While great advances in predicting the effects of coding variants have been made, the assessment of non-coding variants remains challenging. This is especially problematic for variants within promoter regions which can lead to over-expression of a gene or reduce or even abolish its expression. The binding of transcription factors to the DNA can be predicted using position weight matrices (PWMs). More recently, transcription factor flexible models (TFFMs) have been introduced and shown to be more accurate than PWMs. TFFMs are based on hidden Markov models and can account for complex positional dependencies. Our new web-based application FABIAN-variant uses 1224 TFFMs and 3790 PWMs to predict whether and to which degree DNA variants affect the binding of 1387 different human transcription factors. For each variant and transcription factor, the software combines the results of different models for a final prediction of the resulting binding-affinity change. The software is written in C++ for speed but variants can be entered through a web interface. Alternatively, a VCF file can be uploaded to assess variants identified by high-throughput sequencing. The search can be restricted to variants in the vicinity of candidate genes. FABIAN-variant is available freely at https://www.genecascade.org/fabian/.


Assuntos
Proteínas de Ligação a DNA , DNA , Variação Genética , Software , Fatores de Transcrição , Humanos , Sítios de Ligação/genética , DNA/genética , DNA/metabolismo , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Variação Genética/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Internet , Linguagens de Programação
3.
Nucleic Acids Res ; 50(W1): W677-W681, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524573

RESUMO

Precision medicine needs precise phenotypes. The Human Phenotype Ontology (HPO) uses clinical signs instead of diagnoses and has become the standard annotation for patients' phenotypes when describing single gene disorders. Use of the HPO beyond human genetics is however still limited. With SAMS (Symptom Annotation Made Simple), we want to bring sign-based phenotyping to routine clinical care, to hospital patients as well as to outpatients. Our web-based application provides access to three widely used annotation systems: HPO, OMIM, Orphanet. Whilst data can be stored in our database, phenotypes can also be imported and exported as Global Alliance for Genomics and Health (GA4GH) Phenopackets without using the database. The web interface can easily be integrated into local databases, e.g. clinical information systems. SAMS offers users to share their data with others, empowering patients to record their own signs and symptoms (or those of their children) and thus provide their doctors with additional information. We think that our approach will lead to better characterised patients which is not only helpful for finding disease mutations but also to better understand the pathophysiology of diseases and to recruit patients for studies and clinical trials. SAMS is freely available at https://www.genecascade.org/SAMS/.


Assuntos
Bases de Dados Genéticas , Software , Criança , Humanos , Genômica , Fenótipo , Mutação
4.
Nucleic Acids Res ; 50(W1): W83-W89, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489060

RESUMO

With the shift from SNP arrays to high-throughput sequencing, most researchers studying diseases in consanguineous families do not rely on linkage analysis any longer, but simply search for deleterious variants which are homozygous in all patients. AutozygosityMapper allows the fast and convenient identification of disease mutations in patients from consanguineous pedigrees by focussing on homozygous segments shared by all patients. Users can upload multi-sample VCF files, including WGS data, without any pre-processing. Genome-wide runs of homozygosity and the underlying genotypes are presented in graphical interfaces. AutozygosityMapper extends the functions of its predecessor, HomozygosityMapper, to the search for autozygous regions, in which all patients share the same homozygous genotype. We provide export of VCF files containing only the variants found in homozygous regions, this usually reduces the number of variants by two orders of magnitude. These regions can also directly be analysed with our disease mutation identification tool MutationDistiller. The application comes with simple and intuitive graphical interfaces for data upload, analysis, and results. We kept the structure of HomozygosityMapper so that previous users will find it easy to switch. With AutozygosityMapper, we provide a fast web-based way to identify disease mutations in consanguineous families. AutozygosityMapper is freely available at https://www.genecascade.org/AutozygosityMapper/.


Assuntos
Consanguinidade , Análise Mutacional de DNA , Humanos , Genótipo , Homozigoto , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Análise Mutacional de DNA/métodos
5.
Nucleic Acids Res ; 49(W1): W46-W51, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34038559

RESUMO

With Aviator, we present a web service and repository that facilitates surveillance of online tools. Aviator consists of a user-friendly website and two modules, a literature-mining based general and a manually curated module. The general module currently checks 9417 websites twice a day with respect to their availability and stores many features (frontend and backend response time, required RAM and size of the web page, security certificates, analytic tools and trackers embedded in the webpage and others) in a data warehouse. Aviator is also equipped with an analysis functionality, for example authors can check and evaluate the availability of their own tools or those of their peers. Likewise, users can check the availability of a certain tool they intend to use in research or teaching to avoid including unstable tools. The curated section of Aviator offers additional services. We provide API snippets for common programming languages (Perl, PHP, Python, JavaScript) as well as an OpenAPI documentation for embedding in the backend of own web services for an automatic test of their function. We query the respective APIs twice a day and send automated notifications in case of an unexpected result. Naturally, the same analysis functionality as for the literature-based module is available for the curated section. Aviator can freely be used at https://www.ccb.uni-saarland.de/aviator.


Assuntos
Gráficos por Computador , Software , Reposicionamento de Medicamentos , Humanos , Internet , Melanoma/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais , Tratamento Farmacológico da COVID-19
6.
Nucleic Acids Res ; 49(W1): W446-W451, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33893808

RESUMO

Here we present an update to MutationTaster, our DNA variant effect prediction tool. The new version uses a different prediction model and attains higher accuracy than its predecessor, especially for rare benign variants. In addition, we have integrated many sources of data that only became available after the last release (such as gnomAD and ExAC pLI scores) and changed the splice site prediction model. To more easily assess the relevance of detected known disease mutations to the clinical phenotype of the patient, MutationTaster now provides information on the diseases they cause. Further changes represent a major overhaul of the interfaces to increase user-friendliness whilst many changes under the hood have been designed to accelerate the processing of uploaded VCF files. We also offer an API for the rapid automated query of smaller numbers of variants from within other software. MutationTaster2021 integrates our disease mutation search engine, MutationDistiller, to prioritise variants from VCF files using the patient's clinical phenotype. The novel version is available at https://www.genecascade.org/MutationTaster2021/. This website is free and open to all users and there is no login requirement.


Assuntos
Doença/genética , Mutação , Software , Humanos , Fenótipo , Sítios de Splice de RNA , Regiões não Traduzidas
7.
Nucleic Acids Res ; 48(10): 5306-5317, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32338759

RESUMO

The temporal and spatial expression of genes is controlled by promoters and enhancers. Findings obtained over the last decade that not only promoters but also enhancers are characterized by bidirectional, divergent transcription have challenged the traditional notion that promoters and enhancers represent distinct classes of regulatory elements. Over half of human promoters are associated with CpG islands (CGIs), relatively CpG-rich stretches of generally several hundred nucleotides that are often associated with housekeeping genes. Only about 6% of transcribed enhancers defined by CAGE-tag analysis are associated with CGIs. Here, we present an analysis of enhancer and promoter characteristics and relate them to the presence or absence of CGIs. We show that transcribed enhancers share a number of CGI-dependent characteristics with promoters, including statistically significant local overrepresentation of core promoter elements. CGI-associated enhancers are longer, display higher directionality of transcription, greater expression, a lesser degree of tissue specificity, and a higher frequency of transcription-factor binding events than non-CGI-associated enhancers. Genes putatively regulated by CGI-associated enhancers are enriched for transcription regulator activity. Our findings show that CGI-associated transcribed enhancers display a series of characteristics related to sequence, expression and function that distinguish them from enhancers not associated with CGIs.


Assuntos
Ilhas de CpG , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Transcrição Gênica , Regulação da Expressão Gênica , Código das Histonas , Humanos , Especificidade de Órgãos , TATA Box , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
8.
BMC Genomics ; 20(1): 40, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642251

RESUMO

BACKGROUND: Target enrichment combined with chromosome conformation capturing methodologies such as capture Hi-C (CHC) can be used to investigate spatial layouts of genomic regions with high resolution and at scalable costs. A common application of CHC is the investigation of regulatory elements that are in contact with promoters, but CHC can be used for a range of other applications. Therefore, probe design for CHC needs to be adapted to experimental needs, but no flexible tool is currently available for this purpose. RESULTS: We present a Java desktop application called GOPHER (Generator Of Probes for capture Hi-C Experiments at high Resolution) that implements three strategies for CHC probe design. GOPHER's simple approach is similar to the probe design of previous approaches that employ CHC to investigate all promoters, with one probe being placed at each margin of a single digest that overlaps the transcription start site (TSS) of each promoter. GOPHER's simple-patched approach extends this methodology with a heuristic that improves coverage of viewpoints in which the TSS is located near to one of the boundaries of the digest. GOPHER's extended approach is intended mainly for focused investigations of smaller gene sets. GOPHER can also be used to design probes for regions other than TSS such as GWAS hits or large blocks of genomic sequence. GOPHER additionally provides a number of features that allow users to visualize and edit viewpoints, and outputs a range of files useful for documentation, ordering probes, and downstream analysis. CONCLUSION: GOPHER is an easy-to-use and robust desktop application for CHC probe design. Source code and a precompiled executable can be downloaded from the GOPHER GitHub page at https://github.com/TheJacksonLaboratory/Gopher .


Assuntos
Sondas de DNA/genética , Software , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Sítio de Iniciação de Transcrição
9.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37398049

RESUMO

Numerous factors regulate alternative splicing of human genes at a co-transcriptional level. However, how alternative splicing depends on the regulation of gene expression is poorly understood. We leveraged data from the Genotype-Tissue Expression (GTEx) project to show a significant association of gene expression and splicing for 6874 (4.9%) of 141,043 exons in 1106 (13.3%) of 8314 genes with substantially variable expression in ten GTEx tissues. About half of these exons demonstrate higher inclusion with higher gene expression, and half demonstrate higher exclusion, with the observed direction of coupling being highly consistent across different tissues and in external datasets. The exons differ with respect to sequence characteristics, enriched sequence motifs, RNA polymerase II binding, and inferred transcription rate of downstream introns. The exons were enriched for hundreds of isoform-specific Gene Ontology annotations, suggesting that the coupling of expression and alternative splicing described here may provide an important gene regulatory mechanism that might be used in a variety of biological contexts. In particular, higher inclusion exons could play an important role during cell division.

10.
Adv Genet (Hoboken) ; 4(1): 2200016, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910590

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases.

11.
Genome Biol ; 21(1): 171, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660516

RESUMO

We present Hierarchical Bayesian Analysis of Differential Expression and ALternative Splicing (HBA-DEALS), which simultaneously characterizes differential expression and splicing in cohorts. HBA-DEALS attains state of the art or better performance for both expression and splicing and allows genes to be characterized as having differential gene expression, differential alternative splicing, both, or neither. HBA-DEALS analysis of GTEx data demonstrated sets of genes that show predominant DGE or DAST across multiple tissue types. These sets have pervasive differences with respect to gene structure, function, membership in protein complexes, and promoter architecture.


Assuntos
Processamento Alternativo , Expressão Gênica , Modelos Biológicos , Análise de Sequência de RNA , Software , Teorema de Bayes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA