Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422165

RESUMO

Microbial communities are found in all habitable environments and often occur in assemblages with self-organized spatial structures developing over time. This complexity can only be understood, predicted, and managed by combining experiments with mathematical modeling. Individual-based models are particularly suited if individual heterogeneity, local interactions, and adaptive behavior are of interest. Here we present the completely overhauled software platform, the individual-based Dynamics of Microbial Communities Simulator, iDynoMiCS 2.0, which enables researchers to specify a range of different models without having to program. Key new features and improvements are: (1) Substantially enhanced ease of use (graphical user interface, editor for model specification, unit conversions, data analysis and visualization and more). (2) Increased performance and scalability enabling simulations of up to 10 million agents in 3D biofilms. (3) Kinetics can be specified with any arithmetic function. (4) Agent properties can be assembled from orthogonal modules for pick and mix flexibility. (5) Force-based mechanical interaction framework enabling attractive forces and non-spherical agent morphologies as an alternative to the shoving algorithm. The new iDynoMiCS 2.0 has undergone intensive testing, from unit tests to a suite of increasingly complex numerical tests and the standard Benchmark 3 based on nitrifying biofilms. A second test case was based on the "biofilms promote altruism" study previously implemented in BacSim because competition outcomes are highly sensitive to the developing spatial structures due to positive feedback between cooperative individuals. We extended this case study by adding morphology to find that (i) filamentous bacteria outcompete spherical bacteria regardless of growth strategy and (ii) non-cooperating filaments outcompete cooperating filaments because filaments can escape the stronger competition between themselves. In conclusion, the new substantially improved iDynoMiCS 2.0 joins a growing number of platforms for individual-based modeling of microbial communities with specific advantages and disadvantages that we discuss, giving users a wider choice.


Assuntos
Adaptação Psicológica , Algoritmos , Humanos , Altruísmo , Benchmarking , Biofilmes
2.
Curr Psychol ; : 1-15, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37359567

RESUMO

Critical agency (CA) refers to an individual's feeling of power in relation to social inequalities. Research has demonstrated that high CA is associated with positive adolescent outcomes, however, less is known about what supports are important for its development. Moreover, a large majority of the literature is based on studies from the US and various countries in Africa; although the UK is saturated with inequalities there is little research within a UK context. In this paper we examine (a) the validity of using an existing measure of CA with a sample of UK adolescents and (b) the extent to which resilience supports account for variance in CA. Our analysis identified two distinct factors of CA: justice-oriented and community-oriented. High CA in both factors was explained by resilience supports associated with peer relationships (p < 0.01). Our findings push us towards new relational, ecological ways of understanding adolescent CA. We close by instantiating a translational framework for those devising policies in support of youth resilience and CA. Supplementary Information: The online version contains supplementary material available at 10.1007/s12144-023-04578-1.

3.
Bull Math Biol ; 83(4): 36, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646415

RESUMO

The ecological and human health impact of antibiotic use and the related antimicrobial resistance (AMR) in animal husbandry is poorly understood. In many countries, there has been considerable pressure to reduce overall antibiotic use in agriculture or to cease or minimise use of human critical antibiotics. However, a more nuanced approach would consider the differential impact of use of different antibiotic classes; for example, it is not known whether reduced use of bacteriostatic or bacteriolytic classes of antibiotics would be of greater value. We have developed an ordinary differential equation model to investigate the effects of farm practice on the spread and persistence of AMR in the dairy slurry tank environment. We model the chemical fate of bacteriolytic and bacteriostatic antibiotics within the slurry and their effect on a population of bacteria, which are capable of resistance to both types of antibiotic. Through our analysis, we find that changing the rate at which a slurry tank is emptied may delay the proliferation of multidrug-resistant bacteria by up to five years depending on conditions. This finding has implications for farming practice and the policies that influence waste management practices. We also find that, within our model, the development of multidrug resistance is particularly sensitive to the use of bacteriolytic antibiotics, rather than bacteriostatic antibiotics, and this may be cause for controlling the usage of bacteriolytic antibiotics in agriculture.


Assuntos
Criação de Animais Domésticos , Indústria de Laticínios , Farmacorresistência Bacteriana , Modelos Biológicos , Criação de Animais Domésticos/métodos , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Indústria de Laticínios/métodos , Fazendas/estatística & dados numéricos , Reino Unido
4.
PLoS Comput Biol ; 13(9): e1005731, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922354

RESUMO

The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent data is limited: the bioluminescence is different from gene expression because of nonlinear molecular and enzyme dynamics of the Lux system. We have developed a computational approach that, for the first time, allows users of Lux assays to infer gene transcription levels from the light output. This approach is based upon a new mathematical model for Lux activity, that includes the actions of LuxAB, LuxEC and Fre, with improved mechanisms for all reactions, as well as synthesis and turn-over of Lux proteins. The model is calibrated with new experimental data for the LuxAB and Fre reactions from Photorhabdus luminescens-the source of modern Lux reporters-while literature data has been used for LuxEC. Importantly, the data show clear evidence for previously unreported product inhibition for the LuxAB reaction. Model simulations show that predicted bioluminescent profiles can be very different from changes in gene expression, with transient peaks of light output, very similar to light output seen in some experimental data sets. By incorporating the calibrated model into a Bayesian inference scheme, we can reverse engineer promoter activity from the bioluminescence. We show examples where a decrease in bioluminescence would be better interpreted as a switching off of the promoter, or where an increase in bioluminescence would be better interpreted as a longer period of gene expression. This approach could benefit all users of Lux technology.


Assuntos
Proteínas de Bactérias/análise , Genes Reporter/genética , Substâncias Luminescentes/análise , Regiões Promotoras Genéticas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Luciferases/análise , Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Substâncias Luminescentes/química , Substâncias Luminescentes/metabolismo , Dinâmica não Linear , Espectrometria de Fluorescência
5.
BMC Genomics ; 16 Suppl 1: S2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923811

RESUMO

BACKGROUND: Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key component of typical machine learning pipelines for omics data is feature selection, which is used to reduce the raw high-dimensional data into a tractable number of features. Feature selection needs to balance the objective of using as few features as possible, while maintaining high predictive power. This balance is crucial when the goal of data analysis is the identification of highly accurate but small panels of biomarkers with potential clinical utility. In this paper we propose a heuristic for the selection of very small feature subsets, via an iterative feature elimination process that is guided by rule-based machine learning, called RGIFE (Rule-guided Iterative Feature Elimination). We use this heuristic to identify putative biomarkers of osteoarthritis (OA), articular cartilage degradation and synovial inflammation, using both proteomic and transcriptomic datasets. RESULTS AND DISCUSSION: Our RGIFE heuristic increased the classification accuracies achieved for all datasets when no feature selection is used, and performed well in a comparison with other feature selection methods. Using this method the datasets were reduced to a smaller number of genes or proteins, including those known to be relevant to OA, cartilage degradation and joint inflammation. The results have shown the RGIFE feature reduction method to be suitable for analysing both proteomic and transcriptomics data. Methods that generate large 'omics' datasets are increasingly being used in the area of rheumatology. CONCLUSIONS: Feature reduction methods are advantageous for the analysis of omics data in the field of rheumatology, as the applications of such techniques are likely to result in improvements in diagnosis, treatment and drug discovery.


Assuntos
Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Heurística , Aprendizado de Máquina , Proteômica , Algoritmos , Animais , Cartilagem/metabolismo , Bases de Dados Genéticas , Bases de Dados de Proteínas , Cães , Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia
6.
Bioinformatics ; 29(21): 2699-704, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23990411

RESUMO

MOTIVATION: Multiple sequence alignments (MSAs) are usually scored under the assumption that the sequences being aligned have evolved by common descent. Consequently, the differences between sequences reflect the impact of insertions, deletions and mutations. However, non-coding DNA binding sequences, such as transcription factor binding sites (TFBSs), are frequently not related by common descent, and so the existing alignment scoring methods are not well suited for aligning such sequences. RESULTS: We present a novel multiple MSA methodology that scores TFBS DNA sequences by including the interdependence of neighboring bases. We introduced two variants supported by different underlying null hypotheses, one statistically and the other thermodynamically generated. We assessed the alignments through their performance in TFBS prediction; both methods show considerable improvements when compared with standard MSA algorithms. Moreover, the thermodynamically generated null hypothesis outperforms the statistical one due to improved stability in the base stacking free energy of the alignment. The thermodynamically generated null hypothesis method can be downloaded from http://sourceforge.net/projects/msa-edna/. CONTACT: dov.stekel@nottingham.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Sítios de Ligação , Interpretação Estatística de Dados , Software , Termodinâmica
7.
New Phytol ; 203(4): 1194-1207, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24902892

RESUMO

Plant root system plasticity is critical for survival in changing environmental conditions. One important aspect of root architecture is lateral root development, a complex process regulated by hormone, environmental and protein signalling pathways. Here we show, using molecular genetic approaches, that the MYB transcription factor AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. We identify AtMYB93 as an interaction partner of the lateral-root-promoting ARABIDILLO proteins. Atmyb93 mutants have faster lateral root developmental progression and enhanced lateral root densities, while AtMYB93-overexpressing lines display the opposite phenotype. AtMYB93 is expressed strongly, specifically and transiently in the endodermal cells overlying early lateral root primordia and is additionally induced by auxin in the basal meristem of the primary root. Furthermore, Atmyb93 mutant lateral root development is insensitive to auxin, indicating that AtMYB93 is required for normal auxin responses during lateral root development. We propose that AtMYB93 is part of a novel auxin-induced negative feedback loop stimulated in a select few endodermal cells early during lateral root development, ensuring that lateral roots only develop when absolutely required. Putative AtMYB93 homologues are detected throughout flowering plants and represent promising targets for manipulating root systems in diverse crop species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Flores/efeitos dos fármacos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Lancet Planet Health ; 8(2): e124-e133, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331529

RESUMO

Although the effects of antimicrobial resistance (AMR) are most obvious at clinical treatment failure, AMR evolution, transmission, and dispersal happen largely in environmental settings, for example within farms, waterways, livestock, and wildlife. We argue that systems-thinking, One Health approaches are crucial for tackling AMR, by understanding and predicting how anthropogenic activities interact within environmental subsystems, to drive AMR emergence and transmission. Innovative computational methods integrating big data streams (eg, from clinical, agricultural, and environmental monitoring) will accelerate our understanding of AMR, supporting decision making. There are challenges to accessing, integrating, synthesising, and interpreting such complex, multidimensional, heterogeneous datasets, including the lack of specific metrics to quantify anthropogenic AMR. Moreover, data confidentiality, geopolitical and cultural variation, surveillance gaps, and science funding cause biases, uncertainty, and gaps in AMR data and metadata. Combining systems-thinking with modelling will allow exploration, scaling-up, and extrapolation of existing data. This combination will provide vital understanding of the dynamic movement and transmission of AMR within and among environmental subsystems, and its effects across the greater system. Consequently, strategies for slowing down AMR dissemination can be modelled and compared for efficacy and cost-effectiveness.


Assuntos
Antibacterianos , Saúde Única , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Animais Selvagens , Agricultura
9.
Microbiol Spectr ; 12(6): e0395623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700359

RESUMO

Antimicrobial resistance (AMR) poses a significant threat to global health and sustainable development goals, especially in low- and middle-income countries (LMICs). This study aimed to understand the transmission of AMR between poultry, humans, and the environment in Bangladesh using a One Health approach. We analyzed the whole genome sequences (WGS) of 117 extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) isolates, with 46 being carbapenem resistant. These isolates were obtained from human (n = 20) and poultry feces (n = 12), as well as proximal environments (wastewater) (n = 85) of three different study sites, including rural households (n = 48), rural poultry farms (n = 20), and urban wet markets (n = 49). The WGS of ESBL-Ec isolates were compared with 58 clinical isolates from global databases. No significant differences in antibiotic resistance genes (ARGs) were observed in ESBL-Ec isolated from humans with and without exposure to poultry. Environmental isolates showed higher ARG diversity than human and poultry isolates. No clonal transmission between poultry and human isolates was found, but wastewater was a reservoir for ESBL-Ec for both. Except for one human isolate, all ESBL-Ec isolates were distinct from clinical isolates. Most isolates (77.8%) carried at least one plasmid replicon type, with IncFII being the most prevalent. IncFIA was predominant in human isolates, while IncFII, Col(MG828), and p0111 were common in poultry. We observed putative sharing of ARG-carrying plasmids among isolates, mainly from wastewater. However, in most cases, bacterial isolates sharing plasmids were also clonally related, suggesting clonal spread was more probable than just plasmid transfer. IMPORTANCE: Our study underscores that wastewater discharged from households and wet markets carries antibiotic-resistant organisms from both human and animal sources. Thus, direct disposal of wastewater into the environment not only threatens human health but also endangers food safety by facilitating the spread of antimicrobial resistance (AMR) to surface water, crops, vegetables, and subsequently to food-producing animals. In regions with intensive poultry production heavily reliant on the prophylactic use of antibiotics, compounded by inadequate waste management systems, such as Bangladesh, the ramifications are particularly pronounced. Wastewater serves as a pivotal juncture for the dissemination of antibiotic-resistant organisms and functions as a pathway through which strains of human and animal origin can infiltrate the environment and potentially colonize new hosts. Further research is needed to thoroughly characterize wastewater isolates/populations and understand their potential impact on interconnected environments, communities, and wildlife.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Saúde Única , Aves Domésticas , População Rural , beta-Lactamases , Bangladesh/epidemiologia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Animais , beta-Lactamases/genética , beta-Lactamases/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Fezes/microbiologia , Carbapenêmicos/farmacologia , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , População Urbana , Plasmídeos/genética , Águas Residuárias/microbiologia , Farmacorresistência Bacteriana/genética
10.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376377

RESUMO

Viral metagenomics has fuelled a rapid change in our understanding of global viral diversity and ecology. Long-read sequencing and hybrid assembly approaches that combine long- and short-read technologies are now being widely implemented in bacterial genomics and metagenomics. However, the use of long-read sequencing to investigate viral communities is still in its infancy. While Nanopore and PacBio technologies have been applied to viral metagenomics, it is not known to what extent different technologies will impact the reconstruction of the viral community. Thus, we constructed a mock bacteriophage community of previously sequenced phage genomes and sequenced them using Illumina, Nanopore and PacBio sequencing technologies and tested a number of different assembly approaches. When using a single sequencing technology, Illumina assemblies were the best at recovering phage genomes. Nanopore- and PacBio-only assemblies performed poorly in comparison to Illumina in both genome recovery and error rates, which both varied with the assembler used. The best Nanopore assembly had errors that manifested as SNPs and INDELs at frequencies 41 and 157 % higher than found in Illumina only assemblies, respectively. While the best PacBio assemblies had SNPs at frequencies 12 and 78 % higher than found in Illumina-only assemblies, respectively. Despite high-read coverage, long-read-only assemblies recovered a maximum of one complete genome from any assembly, unless reads were down-sampled prior to assembly. Overall the best approach was assembly by a combination of Illumina and Nanopore reads, which reduced error rates to levels comparable with short-read-only assemblies. When using a single technology, Illumina only was the best approach. The differences in genome recovery and error rates between technology and assembler had downstream impacts on gene prediction, viral prediction, and subsequent estimates of diversity within a sample. These findings will provide a starting point for others in the choice of reads and assembly algorithms for the analysis of viromes.


Assuntos
Bacteriófagos , Nanoporos , Benchmarking , Tecnologia , Algoritmos
11.
NPJ Antimicrob Resist ; 2(1): 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757121

RESUMO

Dairy slurry is a major source of environmental contamination with antimicrobial resistant genes and bacteria. We developed mathematical models and conducted on-farm research to explore the impact of wastewater flows and management practices on antimicrobial resistance (AMR) in slurry. Temporal fluctuations in cephalosporin-resistant Escherichia coli were observed and attributed to farm activities, specifically the disposal of spent copper and zinc footbath into the slurry system. Our model revealed that resistance should be more frequently observed with relevant determinants encoded chromosomally rather than on plasmids, which was supported by reanalysis of sequenced genomes from the farm. Additionally, lower resistance levels were predicted in conditions with lower growth and higher death rates. The use of muck heap effluent for washing dirty channels did not explain the fluctuations in cephalosporin resistance. These results highlight farm-specific opportunities to reduce AMR pollution, beyond antibiotic use reduction, including careful disposal or recycling of waste antimicrobial metals.

12.
J Mol Graph Model ; 123: 108508, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235902

RESUMO

Antibiotics enter the environment through waste streams, where they can exert selective pressure for antimicrobial resistance in bacteria. However, many antibiotics are excreted as partly metabolized forms, or can be subject to partial breakdown in wastewater treatment, soil, or through natural processes in the environment. If a metabolite is bioactive, even at sub-lethal levels, and also stable in the environment, then it could provide selection pressure for resistance. (5S)-penicilloic acid of piperacillin has previously been found complexed to the binding pocket of penicillin binding protein 3 (PBP3) of Pseudomonas aeruginosa. Here, we predicted the affinities of all potentially relevant antibiotic metabolites of ten different penicillins to that target protein, using molecular docking and molecular dynamics simulations. Docking predicts that, in addition to penicilloic acid, pseudopenicillin derivatives of these penicillins, as well as 6-aminopenicillanic acid (6APA), could also bind to this target. MD simulations further confirmed that (5R)-pseudopenicillin and 6APA bind the target protein, in addition to (5S)-penicilloic acid. Thus, it is possible that these metabolites are bioactive, and, if stable in the environment, could be contaminants selective for antibiotic resistance. This could have considerable significance for environmental surveillance for antibiotics as a means to reduce antimicrobial resistance, because targeted mass spectrometry could be required for relevant metabolites as well as the native antibiotics.


Assuntos
Antibacterianos , Penicilinas , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas
13.
Antibiotics (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671370

RESUMO

Globally, cephalosporin therapy failure is a serious problem for infection control. One causative agent of cephalosporin-resistant infections is multidrug-resistant (MDR) E. coli producing extended-spectrum ß-lactamases (ESBLs) and/or plasmid-encoded AmpC (pAmpC) ß-lactamases. We evaluated the occurrence of ESBL/pAmpC genetic determinants in phenotypically MDR E. coli isolated from clinical samples of blood, faeces, ear effusion, urine and sputum from a UK hospital. Phenotypic resistance profiling for 18 antibiotics (from seven classes) showed that 32/35 isolates were MDR, with resistance to 4-16 of the tested antibiotics. Of the isolates, 97.1% showed resistance to ampicillin, 71.4% showed resistance to co-amoxiclav, cefotaxime, ceftazidime and ceftiofur, and 68.5% showed resistance to cefquinome. blaCTX-M, blaTEM and blaOXA-1 genes were detected in 23, 13 and 12 strains, respectively, and Intl1 was detected in 17 isolates. The most common subtypes among the definite sequence types were CTX-M-15 (40%) and TEM-1 (75%). No E. coli isolates carried pAmpC genes. Significant correlations were seen between CTX-M carriage and cefotaxime, ceftiofur, aztreonam, ceftazidime and cefquinome resistance; between blaCTX-M, blaTEM and blaOXA-1 carriage and ciprofloxacin resistance; and between Intl1 carriage and trimethoprim/sulfamethoxazole resistance. Thus, MDR phenotypes may be conferred by a relatively small number of genes. The level and pattern of antibiotic resistance highlight the need for better antibiotic therapy guidelines, including reduced use and improved surveillance.

14.
Nucleic Acids Res ; 38(12): e135, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20439311

RESUMO

Prediction of transcription factor binding sites is an important challenge in genome analysis. The advent of next generation genome sequencing technologies makes the development of effective computational approaches particularly imperative. We have developed a novel training-based methodology intended for prokaryotic transcription factor binding site prediction. Our methodology extends existing models by taking into account base interdependencies between neighbouring positions using conditional probabilities and includes genomic background weighting. This has been tested against other existing and novel methodologies including position-specific weight matrices, first-order Hidden Markov Models and joint probability models. We have also tested the use of gapped and ungapped alignments and the inclusion or exclusion of background weighting. We show that our best method enhances binding site prediction for all of the 22 Escherichia coli transcription factors with at least 20 known binding sites, with many showing substantial improvements. We highlight the advantage of using block alignments of binding sites over gapped alignments to capture neighbouring position interdependencies. We also show that combining these methods with ChIP-on-chip data has the potential to further improve binding site prediction. Finally we have developed the ungapped likelihood under positional background platform: a user friendly website that gives access to the prediction method devised in this work.


Assuntos
Genômica/métodos , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/química , Internet , Análise de Sequência com Séries de Oligonucleotídeos
15.
Adv Exp Med Biol ; 751: 301-28, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22821464

RESUMO

We describe the use of computational models of evolution of artificial gene regulatory networks to understand the topologies of biological gene regulatory networks. We summarize results from three complementary approaches that explicitly represent biological processes of transcription, translation, metabolism and gene regulation: a fine-grained model that allows detailed molecular interactions, a coarse-grained model that allows rapid evolution of many generations, and a fixed-architecture model that allows for comparison of different hypotheses. In the first two cases, we are able to evolve networks towards the biological fitness objectives of survival and reproduction. A theme that emerges is that the control of cell energy and resources is a major driver of gene network topology and function. This is demonstrated in the fine-grained model with the emergence of biologically realistic mRNA and protein turnover rates that optimize energy usage and cell division time, and the evolution of basic repressor activities; in the fixed architecture model with a negative self-regulating gene evolving major efficiencies in mRNA usage; and in the coarse-grained model by the need for the inclusion of basal gene expression to obtain biologically plausible networks and the emergence of global regulators keeping all cellular systems under negative control. In summary, we demonstrate the value of biologically realistic computer evolution techniques, and the importance of energy and resource management in driving the topology and function of gene regulatory networks.


Assuntos
Metabolismo Energético/genética , Redes Reguladoras de Genes , Biossíntese de Proteínas/genética , Transcrição Gênica , Bactérias/genética , Evolução Biológica , Divisão Celular/genética , Simulação por Computador , Fungos/genética , Regulação da Expressão Gênica , Aptidão Genética , Modelos Genéticos , Proteínas/genética , RNA Mensageiro/genética , Biologia de Sistemas
16.
Proc Natl Acad Sci U S A ; 106(31): 12980-5, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19651610

RESUMO

In 1999, the population of Vancouver Island, Canada, began to experience an outbreak of a fatal fungal disease caused by a highly virulent lineage of Cryptococcus gattii. This organism has recently spread to the Canadian mainland and Pacific Northwest, but the molecular cause of the outbreak remains unknown. Here we show that the Vancouver Island outbreak (VIO) isolates have dramatically increased their ability to replicate within macrophages of the mammalian immune system in comparison with other C. gattii strains. We further demonstrate that such enhanced intracellular parasitism is directly linked to virulence in a murine model of cryptococcosis, suggesting that this phenotype may be the cause of the outbreak. Finally, microarray studies on 24 C. gattii strains reveals that the hypervirulence of the VIO isolates is characterized by the up-regulation of a large group of genes, many of which are encoded by mitochondrial genome or associated with mitochondrial activities. This expression profile correlates with an unusual mitochondrial morphology exhibited by the VIO strains after phagocytosis. Our data thus demonstrate that the intracellular parasitism of macrophages is a key driver of a human disease outbreak, a finding that has significant implications for a wide range of other human pathogens.


Assuntos
Criptococose/epidemiologia , Cryptococcus/patogenicidade , Surtos de Doenças , Mitocôndrias/fisiologia , Animais , Canadá/epidemiologia , Criptococose/microbiologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/patologia , Fagocitose , Fatores de Virulência
17.
Environ Int ; 169: 107516, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122459

RESUMO

Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Cefalosporinas , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Humanos
18.
PLoS Pathog ; 5(7): e1000529, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19649318

RESUMO

Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH), has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input) with equivalent data produced after passage of the library through mice (output) enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.


Assuntos
Elementos de DNA Transponíveis , Salmonelose Animal/microbiologia , Salmonella enterica/genética , Animais , Clonagem Molecular , Bases de Dados Genéticas , Modelos Animais de Doenças , Biblioteca Gênica , Genes Bacterianos , Camundongos , Camundongos Endogâmicos BALB C , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Salmonella enterica/patogenicidade , Deleção de Sequência , Virulência/genética
19.
Phage (New Rochelle) ; 2(4): 214-223, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36159887

RESUMO

Background: With advances in sequencing technology and decreasing costs, the number of phage genomes that have been sequenced has increased markedly in the past decade. Materials and Methods: We developed an automated retrieval and analysis system for phage genomes (https://github.com/RyanCook94/inphared) to produce the INfrastructure for a PHAge REference Database (INPHARED) of phage genomes and associated metadata. Results: As of January 2021, 14,244 complete phage genomes have been sequenced. The INPHARED data set is dominated by phages that infect a small number of bacterial genera, with 75% of phages isolated on only 30 bacterial genera. There is further bias, with significantly more lytic phage genomes (∼70%) than temperate (∼30%) within our database. Collectively, this results in ∼54% of temperate phage genomes originating from just three host genera. With much debate on the carriage of antibiotic resistance genes and their potential safety in phage therapy, we searched for putative antibiotic resistance genes. Frequency of antibiotic resistance gene carriage was found to be higher in temperate phages than in lytic phages and again varied with host. Conclusions: Given the bias of currently sequenced phage genomes, we suggest to fully understand phage diversity, efforts should be made to isolate and sequence a larger number of phages, in particular temperate phages, from a greater diversity of hosts.

20.
Environ Pollut ; 275: 116602, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582634

RESUMO

Many antibiotic resistance genes co-occur with resistance genes for transition metals, such as copper, zinc, or mercury. In some environments, a positive correlation between high metal concentration and high abundance of antibiotic resistance genes has been observed, suggesting co-selection due to metal presence. Of particular concern is the use of copper and zinc in animal husbandry, leading to potential co-selection for antibiotic resistance in animal gut microbiomes, slurry, manure, or amended soils. For antibiotics, predicted no effect concentrations have been derived from laboratory measured minimum inhibitory concentrations and some minimal selective concentrations have been investigated in environmental settings. However, minimal co-selection concentrations for metals are difficult to identify. Here, we use mathematical modelling to provide a general mechanistic framework to predict minimal co-selective concentrations for metals, given knowledge of their toxicity at different concentrations. We apply the method to copper (Cu), zinc (Zn), mercury (Hg), lead (Pb) and silver (Ag), predicting their minimum co-selective concentrations in mg/L (Cu: 5.5, Zn: 1.6, Hg: 0.0156, Pb: 21.5, Ag: 0.152). To exemplify use of these thresholds, we consider metal concentrations from slurry and slurry-amended soil from a UK dairy farm that uses copper and zinc as additives for feed and antimicrobial footbath: the slurry is predicted to be co-selective, but not the slurry-amended soil. This modelling framework could be used as the basis for defining standards to mitigate risks of antimicrobial resistance applicable to a wide range of environments, including manure, slurry and other waste streams.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Cobre/análise , Resistência Microbiana a Medicamentos/genética , Esterco , Metais Pesados/análise , Plasmídeos , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA