Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 66(1): 85-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326916

RESUMO

A growing body of evidence suggests that protein-protein interactions (PPIs) occur amongst glycosyltransferases (GTs) required for plant glycan biosynthesis (e.g. cell wall polysaccharides and N-glycans) in the Golgi apparatus, and may control the functions of these enzymes. However, identification of PPIs in the endomembrane system in a relatively fast and simple fashion is technically challenging, hampering the progress in understanding the functional coordination of the enzymes in Golgi glycan biosynthesis. To solve the challenges, we adapted and streamlined a reversible Renilla luciferase protein complementation assay (Rluc-PCA), originally reported for use in human cells, for transient expression in Nicotiana benthamiana. We tested Rluc-PCA and successfully identified luminescence complementation amongst Golgi-localizing GTs known to form a heterodimer (GAUT1 and GAUT7) and those which homooligomerize (ARAD1). In contrast, no interaction was shown between negative controls (e.g. GAUT7, ARAD1, IRX9). Rluc-PCA was used to investigate PPIs amongst Golgi-localizing GTs involved in biosynthesis of hemicelluloses. Although no PPI was identified among six GTs involved in xylan biosynthesis, Rluc-PCA confirmed three previously proposed interactions and identified seven novel PPIs amongst GTs involved in xyloglucan biosynthesis. Notably, three of the novel PPIs were confirmed by a yeast-based split-ubiquitin assay. Finally, Gateway-enabled expression vectors were generated, allowing rapid construction of fusion proteins to the Rluc reporters and epitope tags. Our results show that Rluc-PCA coupled with transient expression in N. benthamiana is a fast and versatile method suitable for analysis of PPIs between Golgi resident proteins in an easy and mid-throughput fashion in planta.


Assuntos
Glucanos/biossíntese , Luciferases de Renilla/metabolismo , Nicotiana/genética , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas/métodos , Xilanos/biossíntese , Agrobacterium tumefaciens/genética , Engenharia Genética , Complexo de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
2.
Biochemistry ; 50(18): 3713-23, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21456578

RESUMO

Thioredoxin and thioredoxin reductase can regulate cell metabolism through redox regulation of disulfide bridges or through removal of H(2)O(2). These two enzymatic functions are combined in NADPH-dependent thioredoxin reductase C (NTRC), which contains an N-terminal thioredoxin reductase domain fused with a C-terminal thioredoxin domain. Rice NTRC exists in different oligomeric states, depending on the absence or presence of its NADPH cofactor. It has been suggested that the different oligomeric states may have diverse activity. Thus, the redox status of the chloroplast could influence the oligomeric state of NTRC and thereby its activity. We have characterized the oligomeric states of NTRC from barley (Hordeum vulgare L.). This also includes a structural model of the tetrameric NTRC derived from cryo-electron microscopy and single-particle reconstruction. We conclude that the tetrameric NTRC is a dimeric arrangement of two NTRC homodimers. Unlike that of rice NTRC, the quaternary structure of barley NTRC complexes is unaffected by addition of NADPH. The activity of NTRC was tested with two different enzyme assays. The N-terminal part of NTRC was tested in a thioredoxin reductase assay. A peroxide sensitive Mg-protoporphyrin IX monomethyl ester (MPE) cyclase enzyme system of the chlorophyll biosynthetic pathway was used to test the catalytic ability of both the N- and C-terminal parts of NTRC. The different oligomeric assembly states do not exhibit significantly different activities. Thus, it appears that the activities are independent of the oligomeric state of barley NTRC.


Assuntos
Hordeum/enzimologia , NADP/química , Tiorredoxina Dissulfeto Redutase/química , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Dimerização , Magnésio/química , Conformação Molecular , Dados de Sequência Molecular , Oxirredução , Peróxidos/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Tiorredoxinas/química
3.
Front Plant Sci ; 11: 585774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072156

RESUMO

The major cell wall pectic glycan homogalacturonan (HG) is crucial for plant growth, development, and reproduction. HG synthesis occurs in the Golgi and is catalyzed by members of the galacturonosyltransferase (GAUT) family with GAUT1 being the archetypal and best studied family member. In Arabidopsis suspension culture cells and tobacco leaves, the Golgi localization of Arabidopsis GAUT1 has been shown to require protein-protein interactions with its homolog GAUT7. Here we show that in pollen tubes GAUT5 and GAUT6, homologs of GAUT7, also target GAUT1 to the Golgi apparatus. Pollen tube germination and elongation in double homozygous knock-out mutants (gaut5 gaut6, gaut5 gaut7, and gaut6 gaut7) are moderately impaired, whereas gaut5 -/- gaut6 -/- gaut7 +/- triple mutant is severely impaired and male infertile. Amounts and distributions of methylesterified HG in the pollen tube tip were severely distorted in the double and heterozygous triple mutants. A chimeric protein comprising GAUT1 and a non-cleavable membrane anchor domain was able to partially restore pollen tube germination and elongation and to reverse male sterility in the triple mutant. These results indicate that GAUT5, GAUT6, and GAUT7 are required for synthesis of native HG in growing pollen tubes and have critical roles in pollen tube growth and male fertility in Arabidopsis.

4.
FEBS Lett ; 582(18): 2773-8, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18625226

RESUMO

The chloroplast-localized NADPH-dependent thioredoxin reductase (NTRC) has been found to be able to reduce hydrogen peroxide scavenging 2-Cys peroxiredoxins. We show that the Arabidopsis ntrc mutant is perturbed in chlorophyll biosynthesis and accumulate intermediates preceding protochlorophyllide formation. A specific involvement of NTRC during biosynthesis of protochlorophyllide is indicated from in vitro aerobic cyclase assays in which the conversion of Mg-protoporhyrin monomethyl ester into protochlorophyllide is stimulated by addition of the NTRC/2-Cys peroxiredoxin system. These findings support the hypothesis that this NADPH-dependent hydrogen peroxide scavenging system is particularly important during periods with limited reducing power from photosynthesis, e.g. under chloroplast biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Clorofila/biossíntese , Oxigenases/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Aerobiose , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/genética , Tiorredoxina Dissulfeto Redutase/genética
5.
Biotechnol Biofuels ; 11: 194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026809

RESUMO

BACKGROUND: Softwood is a promising feedstock for lignocellulosic biorefineries, but as it contains galactoglucomannan efficient mannan-degrading enzymes are required to unlock its full potential. RESULTS: Boosting of the saccharification of pretreated softwood (Canadian lodgepole pine) was investigated for 10 fungal endo-ß(1→4)-mannanases (endomannanases) from GH5 and GH26, including 6 novel GH26 enzymes. The endomannanases from Trichoderma reesei (TresMan5A) and Podospora anserina (PansMan26) were investigated with and without their carbohydrate-binding module (CBM). The pH optimum and initial rates of enzyme catalysed hydrolysis were determined on pure ß-mannans, including acetylated and deacetylated spruce galactoglucomannan. Melting temperature (Tm) and stability of the endomannanases during prolonged incubations were also assessed. The highest initial rates on the pure mannans were attained by GH26 endomannanases. Acetylation tended to decrease the enzymatic rates to different extents depending on the enzyme. Despite exhibiting low rates on the pure mannan substrates, TresMan5A with CBM1 catalysed highest release among the endomannanases of both mannose and glucose during softwood saccharification. The presence of the CBM1 as well as the catalytic capability of the TresMan5A core module itself seemed to allow fast and more profound degradation of portions of the mannan that led to better cellulose degradation. In contrast, the presence of the CBM35 did not change the performance of PansMan26 in softwood saccharification. CONCLUSIONS: This study identified TresMan5A as the best endomannanase for increasing cellulase catalysed glucose release from softwood. Except for the superior performance of TresMan5A, the fungal GH5 and GH26 endomannanases generally performed on par on the lignocellulosic matrix. The work also illustrated the importance of using genuine lignocellulosic substrates rather than simple model substrates when selecting enzymes for industrial biomass applications.

6.
PLoS One ; 7(2): e31324, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363620

RESUMO

The Golgi apparatus is the main site of glycan biosynthesis in eukaryotes. Better understanding of the membrane topology of the proteins and enzymes involved can impart new mechanistic insights into these processes. Publically available bioinformatic tools provide highly variable predictions of membrane topologies for given proteins. Therefore we devised a non-invasive experimental method by which the membrane topologies of Golgi-resident proteins can be determined in the Golgi apparatus in living tissues. A Golgi marker was used to construct a series of reporters based on the principle of bimolecular fluorescence complementation. The reporters and proteins of interest were recombinantly fused to split halves of yellow fluorescent protein (YFP) and transiently co-expressed with the reporters in the Nicotiana benthamiana leaf tissue. Output signals were binary, showing either the presence or absence of fluorescence with signal morphologies characteristic of the Golgi apparatus and endoplasmic reticulum (ER). The method allows prompt and robust determinations of membrane topologies of Golgi-resident proteins and is termed GO-PROMTO (for GOlgi PROtein Membrane TOpology). We applied GO-PROMTO to examine the topologies of proteins involved in the biosynthesis of plant cell wall polysaccharides including xyloglucan and arabinan. The results suggest the existence of novel biosynthetic mechanisms involving transports of intermediates across Golgi membranes.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Biologia Computacional/métodos , Complexo de Golgi/enzimologia , Proteínas de Membrana/química , Folhas de Planta/metabolismo , Polissacarídeos/biossíntese , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Glucanos/biossíntese , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Especificidade de Órgãos , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Nicotiana/citologia , Nicotiana/genética , Xilanos/biossíntese
7.
Phytochemistry ; 71(8-9): 853-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20417532

RESUMO

Chlorophyll captures and redirects light-energy and is thus essential for photosynthetic organisms. The demand for chlorophyll differs throughout the day and night and in response to changing light conditions. Moreover, the chlorophyll biosynthesis pathway is up to certain points shared between the different tetrapyrroles; chlorophyll, heme, siroheme and phytochromobilin, for which the cell has different requirements at different time points. Combined with the phototoxic properties of tetrapyrroles which, if not properly protected, can lead to formation of reactive oxygen species (ROS), the need for a strict regulation of the chlorophyll biosynthetic pathway is obvious. Here we describe the current knowledge on regulation of chlorophyll biosynthesis in plants by the chloroplast redox state with emphasis on the Mg-chelatase situated at the branch point between the heme and the chlorophyll pathway. We discuss the proposed role of the Mg-chelatase as a key regulator of the tetrapyrrole pathway by its effect on enzymes both up- and downstream in the pathway and we specifically describe how redox state might regulate the Mg-branch. Finally, we propose that a recently identified NADPH-dependent thioredoxin reductase (NTRC) could be involved in redox regulation or protection of chlorophyll biosynthetic enzymes and describe the possible modes of action by this enzyme.


Assuntos
Clorofila/biossíntese , Liases/metabolismo , Luz , Metiltransferases/metabolismo , Estrutura Molecular , Oxirredução , Tetrapirróis/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
8.
Photochem Photobiol Sci ; 8(2): 279-86, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19247522

RESUMO

Traditionally chlorophyll (Chl) and Chl precursors have been studied in vitro or in leaf tissue at low temperature. These methods are destructive and make it impossible to work with the same individual plant later on. In this paper we present a method for in vivo detection of Chl and its precursors in seedling plants which can be rescued for further studies. Multi-photon microscopy, which we show to be more reliable in vivo than UV-laser microscopy, is used to detect precursors in the biosynthetic pathway leading to Chl. The sensitivity and ability to distinguish different precursors with this system is compared to current methods. Furthermore, we report on optimization of the spectral scanning method with the aim to minimize the excitation light-evoked photo-conversion of the chlorophyll precursors.


Assuntos
Clorofila/metabolismo , Arabidopsis/fisiologia , Clorofila/biossíntese , Escuridão , Hordeum/crescimento & desenvolvimento , Fótons , Folhas de Planta/crescimento & desenvolvimento , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA