Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2207831120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897972

RESUMO

During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.


Assuntos
Propofol , Humanos , Propofol/farmacologia , Estado de Consciência , Eletroencefalografia , Encéfalo , Tálamo , Inconsciência/induzido quimicamente , Vias Neurais , Córtex Cerebral
2.
J Cogn Neurosci ; 36(2): 394-413, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902596

RESUMO

A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.


Assuntos
Córtex Auditivo , Propofol , Animais , Propofol/farmacologia , Inconsciência/induzido quimicamente , Encéfalo/fisiologia , Anestesia Geral , Córtex Auditivo/fisiologia
3.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766068

RESUMO

BACKGROUND: Deep brain stimulation of central thalamus (CT-DBS) has potential for modulating states of consciousness, but it can also trigger spike-wave discharges (SWDs). OBJECTIVES: To report the probability of inducing SWDs during CT-DBS in awake mice. METHODS: Mice were implanted with electrodes to deliver unilateral and bilateral CT-DBS at different frequencies while recording EEG. We titrated stimulation current by gradually increasing it at each frequency until an SWD appeared. Subsequent stimulations to test arousal modulation were performed at the current one step below the current that caused an SWD during titration. RESULTS: In 2.21% of the test stimulations (10 out of 12 mice), CT-DBS caused SWDs at currents lower than the titrated current, at currents as low as 20 uA. CONCLUSION: Our study found a small but significant probability of inducing SWDs even after titration and at relatively low currents. EEG should be closely monitored for SWDs when performing CT-DBS in both research and clinical settings.

4.
Hear Res ; 437: 108838, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441880

RESUMO

Direct neural recordings from human auditory cortex have demonstrated encoding for acoustic-phonetic features of consonants and vowels. Neural responses also encode distinct acoustic amplitude cues related to timing, such as those that occur at the onset of a sentence after a silent period or the onset of the vowel in each syllable. Here, we used a group reduced rank regression model to show that distributed cortical responses support a low-dimensional latent state representation of temporal context in speech. The timing cues each capture more unique variance than all other phonetic features and exhibit rotational or cyclical dynamics in latent space from activity that is widespread over the superior temporal gyrus. We propose that these spatially distributed timing signals could serve to provide temporal context for, and possibly bind across time, the concurrent processing of individual phonetic features, to compose higher-order phonological (e.g. word-level) representations.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Córtex Auditivo/fisiologia , Fonética , Estimulação Acústica
5.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425684

RESUMO

A critical component of anesthesia is the loss sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential (LFP) and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of non-human primates before and during propofol mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-induced coherence between brain areas in the LFP of awake animals. By contrast, propofol mediated unconsciousness eliminated stimulus-induced coherence and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just due to asynchronous down states. Rather, both Down states and Up states reflect disrupted dynamics.

6.
Sci Rep ; 12(1): 15940, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153353

RESUMO

Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.


Assuntos
Encéfalo , Animais , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Ratos
7.
Sci Rep ; 10(1): 13701, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792556

RESUMO

A controversy has developed in recent years over the roles of frontal and posterior cortices in mediating consciousness and unconsciousness. Disruption of posterior cortex during sleep appears to suppress the contents of dreaming, yet activation of frontal cortex appears necessary for perception and can reverse unconsciousness under anesthesia. We used anesthesia to study how regional cortical disruption, mediated by slow wave modulation of broadband activity, changes during unconsciousness in humans. We found that broadband slow-wave modulation enveloped posterior cortex when subjects initially became unconscious, but later encompassed both frontal and posterior cortex when subjects were more deeply anesthetized and likely unarousable. Our results suggest that unconsciousness under anesthesia comprises several distinct shifts in brain state that disrupt the contents of consciousness distinct from arousal and awareness of those contents.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Eletroencefalografia/métodos , Inconsciência/fisiopatologia , Adulto , Anestésicos Intravenosos/administração & dosagem , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Humanos , Propofol/efeitos adversos , Inconsciência/induzido quimicamente , Adulto Jovem
8.
Int IEEE EMBS Conf Neural Eng ; 2019: 299-302, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31156761

RESUMO

Understanding how different brain areas interact to generate complex behavior is a primary goal of neuroscience research. One approach, functional connectivity analysis, aims to characterize the connectivity patterns within brain networks. In this paper, we address the problem of discriminative connectivity, i.e. determining the differences in network structure under different experimental conditions. We introduce a novel model called Sparse Multi-task Inverse Covariance Estimation (SMICE) which is capable of estimating a common connectivity network as well as discriminative networks across different tasks. We apply the method to EEG signals after solving the inverse problem of source localization, yielding networks defined on the cortical surface. We propose an efficient algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve SMICE. We apply our newly developed framework to find common and discriminative connectivity patterns for α-oscillations during the Sleep Onset Process (SOP) and during Rapid Eye Movement (REM) sleep. Even though both stages exhibit a similar α-oscillations, we show that the underlying networks are distinct.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4740-4743, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441408

RESUMO

Neural oscillations reflect the coordinated activity of neuronal populations across a wide range of temporal and spatial scales, and are thought to play a significant role in mediating many aspects of brain function, including atten- tion, cognition, sensory processing, and consciousness. Brain oscillations are typically analyzed using frequency domain methods such as nonparametric spectral analysis, or time domain methods based on linear bandpass filtering. A typical analysis might seek to estimate the power within an oscillation sitting within a particular frequency band. A common approach to this problem is to estimate the signal power within that band, in frequency domain using the power spectrum, or in time domain by estimating the power or variance in a bandpass filtered signal. A major conceptual flaw in this approach is that neural systems, like many physiological or physical systems, have inherent broad-band 1/P' dynamics, whether or not an oscillation is present. Calculating power-in-band, or power in a bandpass filtered signal, can therefore be misleading, since such calculations do not distinguish between broadband power within the band of interest, and true underlying oscillations. In this paper, we present an approach for analyzing neural oscillations using a combination of linear oscillatory models. We estimate the parameters of these models using an expectation maximization (EM) algorithm, and employ AIC to select the appropriate model and identify the oscillations present in the data. We demonstrate the application of this method to univariate electroencephalogram (EEG) data recorded at quiet rest and during propofol-induced unconsciousness.


Assuntos
Análise de Dados , Eletroencefalografia , Algoritmos , Encéfalo , Inconsciência
10.
Front Neural Circuits ; 11: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725184

RESUMO

Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12-40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC-CT and PFC-PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC-CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1-4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.


Assuntos
Anestésicos Inalatórios/farmacologia , Ritmo Delta/efeitos dos fármacos , Éteres Metílicos/farmacologia , Lobo Parietal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Animais , Ritmo beta/efeitos dos fármacos , Sincronização Cortical/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletrodos Implantados , Ritmo Gama/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Sevoflurano , Tálamo/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-24678295

RESUMO

The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA