Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Angew Chem Int Ed Engl ; 62(1): e202213462, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279321

RESUMO

We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6-tri-tert-butylphenoxyl (t Bu3 ArO⋅) as a H atom acceptor to cleave the N-H bond of a coordinated NH3 ligand up to 56 equiv of N2 per Ni center can be generated. Employing the N-oxyl radical 2,2,6,6-(tetramethylpiperidin-1-yl)oxyl (TEMPO⋅) as the H-atom acceptor, up to 15 equiv of N2 per Ni center are formed. A bridging Ni-hydrazine product identified by isotopic nitrogen (15 N) studies and supported by computational models indicates the N-N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]-NH2 fragments. Ni-mediated hydrazine disproportionation to N2 and NH3 completes the catalytic cycle.

2.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 272-281, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30724801

RESUMO

Early-life stress (ELS) is known to exert long-term effects on brain function, with resulting deleterious consequences for several aspects of mental health, including the development of addiction to drugs of abuse. One potential mechanism in humans is suggested by findings that ELS interacts with polymorphisms of the GABRA2 gene, encoding α2 subunits of GABAA receptors, to increase the risk for both post-traumatic stress disorder and vulnerability to cocaine addiction. We used a mouse model, in which the amount of material for nest building was reduced during early postnatal life, to study interactions between ELS and expression of α2-containing GABAA receptors in influencing cocaine-related behaviour. Breeding of parents heterozygous for a deletion of α2 resulted in litters containing homozygous knockout (α2), heterozygous knockout (α2) and wild-type (α2) offspring. Following the ELS procedure, the mice were allowed to develop to adulthood before being tested for the acute effect of cocaine on locomotor stimulation, behavioural sensitization to repeated cocaine and to cocaine-conditioned activity. Exposure to ELS resulted in increased acute locomotor stimulant effects of cocaine across all genotypes, with the most marked effects in α2 mice (which also showed increased activity following vehicle). Repeated cocaine administration to nonstressed mice resulted in sensitization in α2 and α2 mice, but, in keeping with previous findings, not in α2 mice. Previous exposure to ELS reduced sensitization in α2 mice, albeit not significantly, and abolished sensitization in α2 mice. Conditioned activity was elevated following ELS in all animals, independently of genotype. Thus, while the enhanced acute effects of cocaine following ELS being most marked in α2 mice suggests a function of α2-containing GABAA receptors in protecting against stress, the interaction between ELS and genotype in influencing sensitization may be more in keeping with ELS reducing expression of α2-containing GABAA receptors. The ability of ELS to increase cocaine-conditioned locomotor activity appears to be independent of α2-containing GABAA receptors.


Assuntos
Cocaína/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Estresse Psicológico/fisiopatologia , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Aprendizagem/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/metabolismo
3.
Cereb Cortex ; 27(1): 11-23, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365778

RESUMO

In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1-/- neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo , Neurônios/metabolismo , Animais , Quinases relacionadas a CDC2 e CDC28/genética , Ciclo Celular , Espinhas Dendríticas , Hipocampo/patologia , Potenciação de Longa Duração , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Agregados Proteicos , Aprendizagem Espacial
4.
Alcohol Clin Exp Res ; 40(10): 2208-2217, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27565012

RESUMO

BACKGROUND: Youths with family history (FH) of alcoholism are at greater risk of developing alcohol use disorder (AUD); heightened impulsive behavior may underlie such increased vulnerability. Here, we studied waiting impulsivity (previously suggested to predispose to alcohol drinking) in young moderate-to-heavy social drinkers (18 to 33 years old) characterized as family history positive (FHP) and negative (FHN) following an alcoholic or nonalcoholic (placebo) drink. METHODS: Two groups of young male and female social drinkers (n = 64) were administered an acute dose of alcohol (0.8 g/kg) or placebo. One group (FHP; n = 24) had first-degree relatives with problems of alcohol misuse; the other group (FHN) did not. Participants completed 4 variants of the Sx-5CSRTT, a task measuring waiting impulsivity. In addition, other types of impulsive behavior were tested (by means of the stop-signal task [SST]; information sampling task [IST]; Delay Discounting Questionnaire; 2-choice impulsivity paradigm; and time estimation task). RESULTS: Young FHP adults showed more premature responding than FHN when evaluated under increased attentional load (high waiting impulsivity), while, in contrast, they presented a more conservative strategy on the IST (less impulsive behavior), compared to FHN. Acute alcohol impaired inhibitory control on the SST in all participants, and induced a marginal increase of premature responses, but did not affect other measures of impulsivity. CONCLUSIONS: Assessing for exaggerated waiting impulsivity may provide a potential endophenotype associated with risk for the development of alcohol addiction (i.e., offspring of alcoholics).


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Filho de Pais com Deficiência/psicologia , Comportamento Impulsivo/efeitos dos fármacos , Adolescente , Adulto , Endofenótipos , Feminino , Humanos , Masculino , Testes Psicológicos , Adulto Jovem
5.
J Neurosci ; 34(3): 823-38, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431441

RESUMO

Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ß, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ(-/-) or α4(-/-) mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4(-/-) mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4(D1-/-)) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4(-/-) or α4(D1-/-) mice, blocked cocaine enhancement of CPP. In comparison, α4(D2-/-) mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ßδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Inibição Neural/fisiologia , Núcleo Accumbens/fisiologia , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Sinapses/efeitos dos fármacos
6.
Alcohol Clin Exp Res ; 38(10): 2579-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25346503

RESUMO

BACKGROUND: A strong association exists between impulsivity and binge drinking, and between adolescent alcohol exposure and alcohol abuse in humans. To understand the extent to which early-life alcohol exposure contributes to increased impulsivity, we developed an animal model of binge drinking using 2 strains of mice, C57BL/6J (B6) and DBA2/J (D2), that differ in both motor impulsivity and alcohol drinking. METHODS: Mice were treated with 2 g/kg ethanol (EtOH) during their early (intermittent ethanol exposure [IEE]_Early; postnatal day [PND]30 to 45) or late (IEE_Late; PND45 to 60) adolescence or with saline (control group [CON]) throughout the adolescence period. To determine the consequences IEE on waiting impulsivity and attentional function, the number of premature responses and omissions, respectively, were evaluated in adulthood using the 5-choice serial reaction time task (5-CSRTT). To examine the effects of IEE on choice impulsivity, risky decision making was assessed in adulthood using a mouse version of the Iowa Gambling Task (mIGT). Additionally, the acute effects of EtOH in adulthood on waiting impulsivity and choice preference were investigated. RESULTS: We provide experimental evidence that IEE during late, but not early, adolescence disrupts waiting impulsivity and attentional abilities in the 5-CSRTT. In contrast, IEE during early, but not late, adolescence altered risky decision making in the mIGT. D2 mice consistently showed lower premature responding than B6 mice in both the mIGT and the 5-CSRTT, but greater risky decision making on the mIGT. IEE and CON mice showed similar responsiveness to the acute EtOH effects on premature responding, but increased risky choices only in B6_IEE_Early mice. CONCLUSIONS: Our observations suggest a direct effect of IEE during adolescence on waiting and choice impulsivity and attention later in life.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Transtornos Dissociativos/fisiopatologia , Etanol/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/efeitos dos fármacos , Tomada de Decisões/fisiologia , Relação Dose-Resposta a Droga , Comportamento Impulsivo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Modelos Animais , Especificidade da Espécie
7.
Artigo em Inglês | MEDLINE | ID: mdl-38976140

RESUMO

The use of animal models continues to be essential for carrying out research into clinical phenomena, including addiction. However, the complexity of the clinical condition inevitably means that even the best animal models are inadequate, and this may go some way to account for the apparent failures of discoveries from animal models, including the identification of potential novel therapies, to translate to the clinic. We argue here that it is overambitious and misguided in the first place to attempt to model complex, multifacetted human disorders such as addiction in animals, and especially in rodents, and that all too frequently "validity" of such models is limited to superficial similarities, referred to as "face validity", that reflect quite different underlying phenomena and biological processes from the clinical situation. Instead, a more profitable approach is to identify (a) well-defined intermediate human behavioural phenotypes that reflect defined, limited aspects of, or contributors to, the human clinical disorder, and (b) to develop animal models that are homologous with those discrete human behavioural phenotypes in terms of psychological processes, and underlying neurobiological mechanisms. Examples of past and continuing weaknesses and suggestions for more limited approaches that may allow better homology between the test animal and human condition are made.

8.
Proc Natl Acad Sci U S A ; 107(5): 2289-94, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133874

RESUMO

Because GABA(A) receptors containing alpha2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine's ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha2-GABA(A) receptors (alpha2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Adulto , Animais , Azidas/farmacologia , Benzodiazepinas/farmacologia , Sítios de Ligação/genética , Estudos de Casos e Controles , Transtornos Relacionados ao Uso de Cocaína/genética , Condicionamento Psicológico , Dopamina/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A/deficiência , Recompensa , Adulto Jovem
9.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553242

RESUMO

Extrasynaptic GABAA receptors (GABAARs) composed of α4, ß, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4ßδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Núcleo Accumbens , Receptores de GABA-A , Neurônios , Camundongos Knockout , Ácido gama-Aminobutírico/farmacologia , Receptores de Dopamina D2
10.
Transl Psychiatry ; 13(1): 167, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173343

RESUMO

Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Camundongos , Fenótipo , Comportamento Impulsivo , Personalidade/genética , Polimorfismo de Nucleotídeo Único , Moléculas de Adesão Celular/genética
11.
J Neurosci ; 30(36): 11973-82, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826661

RESUMO

Understanding the psychobiological basis of relapse remains a challenge in developing therapies for drug addiction. Relapse in cocaine addiction often occurs following exposure to environmental stimuli previously associated with drug taking. The metabotropic glutamate receptor, mGluR5, is potentially important in this respect; it plays a central role in several forms of striatal synaptic plasticity proposed to underpin associative learning and memory processes that enable drug-paired stimuli to acquire incentive motivational properties and trigger relapse. Using cell type-specific RNA interference, we have generated a novel mouse line with a selective knock-down of mGluR5 in dopamine D1 receptor-expressing neurons. Although mutant mice self-administer cocaine, we show that reinstatement of cocaine-seeking induced by a cocaine-paired stimulus is impaired. By examining different aspects of associative learning in the mutant mice, we identify deficits in specific incentive learning processes that enable a reward-paired stimulus to directly reinforce behavior and to become attractive, thus eliciting approach toward it. Our findings show that glutamate signaling through mGluR5 located on dopamine D1 receptor-expressing neurons is necessary for incentive learning processes that contribute to cue-induced reinstatement of cocaine-seeking and which may underpin relapse in drug addiction.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Encéfalo/citologia , Transtornos Relacionados ao Uso de Cocaína , Motivação/fisiologia , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Análise de Variância , Animais , Comportamento Animal , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Motivação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Interferência de RNA/fisiologia , Receptor de Glutamato Metabotrópico 5 , Receptores de GABA-B/metabolismo , Receptores de Glutamato Metabotrópico/genética , Reforço Psicológico , Autoadministração/métodos
12.
Behav Pharmacol ; 22(1): 76-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21127416

RESUMO

A clear interrelationship between biological rhythms and addiction has emerged from recent preclinical and clinical studies. In particular, the manipulation of the so-called 'clock genes' interferes with the manifestation of drug-related responses. For instance, Period 1 (Per1(Brdm1)) mutant mice do not display behavioural sensitization in response to repeated cocaine administration and do not express cocaine conditioned place preference, in contrast to control littermates. To assess the involvement of the mPer1 gene in a robust model of cocaine reinforcement and relapse-like behaviour, we tested Per1(Brdm1) mutant mice and their littermates for self-administration of several doses (0.06-0.75 mg/kg/infusion) of cocaine, and for reinstatement of an extinguished cocaine-seeking response. Per1(Brdm1) mutant mice did not differ from control littermates in their propensity to self-administer cocaine or to reinstate an extinguished cocaine-seeking behaviour in response to drug-associated cues or cocaine priming. In contrast to our earlier data on Per1(Brdm1) mutant mice in cocaine sensitization and conditioned place preference, this finding does not suggest a relationship between the circadian clock gene mPer1 in cocaine self-administration and reinstatement of cocaine-seeking behaviour. This study adds one further example to the notion that various behavioural tests usually used in addiction research rely on different neurobiological substrates.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Proteínas Circadianas Period/genética , Animais , Comportamento Animal/fisiologia , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Camundongos , Proteínas Circadianas Period/metabolismo , Autoadministração
13.
Addict Biol ; 15(2): 109-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148775

RESUMO

There is only modest overlap in the most common alcohol consumption phenotypes measured in animal studies and those typically studied in humans. To address this issue, we identified a number of alcohol consumption phenotypes of importance to the field that have potential for consilience between human and animal models. These phenotypes can be broken down into three categories: (1) abstinence/the decision to drink or abstain; (2) the actual amount of alcohol consumed; and (3) heavy drinking. A number of suggestions for human and animal researchers are made in order to address these phenotypes and enhance consilience. Laboratory studies of the decision to drink or to abstain are needed in both human and animal research. In human laboratory studies, heavy or binge drinking that meets cut-offs used in epidemiological and clinical studies should be reported. Greater attention to patterns of drinking over time is needed in both animal and human studies. Individual differences pertaining to all consumption phenotypes should be addressed in animal research. Lastly, improved biomarkers need to be developed in future research for use with both humans and animals. Greater precision in estimating blood alcohol levels in the field, together with consistent measurement of breath/blood alcohol levels in human laboratory and animal studies, provides one means of achieving greater consilience of alcohol consumption phenotypes.


Assuntos
Alcoolismo/diagnóstico , Alcoolismo/genética , Etanol/administração & dosagem , Fenótipo , Alcoolismo/epidemiologia , Animais , Condicionamento Operante , Modelos Animais de Doenças , Humanos , Ratos , Recidiva , Reforço Psicológico , Especificidade da Espécie , Inquéritos e Questionários , Temperança
14.
Addict Biol ; 15(2): 145-68, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148777

RESUMO

Reward is a concept fundamental to discussions of drug abuse and addiction. The idea that altered sensitivity to either drug-reward, or to rewards in general, contributes to, or results from, drug-taking is a common theme in several theories of addiction. However, the concept of reward is problematic in that it is used to refer to apparently different behavioural phenomena, and even to diverse neurobiological processes (reward pathways). Whether these different phenomena are different behavioural expressions of a common underlying process is not established, and much research suggests that there may be only loose relationships among different aspects of reward. Measures of rewarding effects of drugs in humans often depend upon subjective reports. In animal studies, such insights are not available, and behavioural measures must be relied upon to infer rewarding effects of drugs or other events. In such animal studies, but also in many human methods established to objectify measures of reward, many other factors contribute to the behaviour being studied. For that reason, studying the biological (including genetic) bases of performance of tasks that ostensibly measure reward cannot provide unequivocal answers. The current overview outlines the strengths and weaknesses of current approaches that hinder the conciliation of cross-species studies of the genetics of reward sensitivity and the dysregulation of reward processes by drugs of abuse. Some suggestions are made as to how human and animal studies may be made to address more closely homologous behaviours, even if those processes are only partly able to isolate 'reward' from other factors contributing to behavioural output.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/psicologia , Fenótipo , Recompensa , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Comportamento de Escolha , Condicionamento Psicológico , Transtornos Disruptivos, de Controle do Impulso e da Conduta/psicologia , Habituação Psicofisiológica , Humanos , Teoria Psicológica , Sensibilidade e Especificidade
15.
Neuropharmacology ; 141: 98-112, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30138693

RESUMO

Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.


Assuntos
Cocaína/farmacologia , Locomoção/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Receptores de GABA-A/biossíntese , Animais , Sensibilização do Sistema Nervoso Central/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
16.
J Neurosci ; 26(27): 7163-71, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16822973

RESUMO

Repeated administration of abused drugs sensitizes their stimulant effects and results in a drug-paired environment eliciting conditioned activity. We tested whether food induces similar effects. Food-deprived male mice were given novel food during 30 min tests in a runway (FR group) that measured locomotor activity. Whereas the activity of this group increased with repeated testing, that of a group exposed to the runways but that received the food in the home cage (FH group), or of a group satiated by prefeeding before testing (SAT group), decreased. When exposed to the runways in the absence of food, the paired group was more active than the other groups (conditioned activity); no activity differences were seen in an alternative, non-food-paired, apparatus. Conditioned activity survived a 3-week period without runway exposure. Conditioned activity was selectively reduced by the opiate antagonist naltrexone (10-20 mg/kg) and by the noncompetitive AMPA receptor antagonist GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] (5-10 mg/kg). The D1 antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] (15-30 microg/kg) and D2 antagonist sulpiride (25-125 mg/kg) reduced activity nonspecifically. A single intraperitoneal dose of cocaine (10 mg/kg) or morphine (20 mg/kg) increased activity compared with saline, the stimulant effect being larger in the FR group, suggesting "cross-sensitization" to these drugs. However, pretreatment with GYKI 52466 or naltrexone at doses that suppressed conditioned activity in FR animals suppressed cross-sensitization to cocaine. When allowed ad libitum access to food in the runway, FR mice consumed more pellets in a time-limited test. Thus, many of the features of behavioral sensitization to drugs can be demonstrated using food reward and may contribute to excessive eating.


Assuntos
Analgésicos Opioides/farmacologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Morfina/farmacologia , Animais , Benzazepinas/farmacologia , Benzodiazepinas/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/antagonistas & inibidores , Sulpirida/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
17.
Neuropsychopharmacology ; 32(2): 343-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16495937

RESUMO

The learning processes underlying the formation of drug-cue associations involve changes in synaptic transmission mediated by AMPA receptors. Here, we examine the consequences of targeted deletion of the gene encoding GluR1 subunits of AMPA receptors (gria1 knockouts (KO)) on cocaine self-administration and on the ability of cocaine-paired cues to affect cocaine-seeking in mice. Cocaine self-administration was unaffected by gria1 deletion, as was the ability of a cocaine-paired cue to reinstate responding following extinction, following either a 3 or a 66 day delay. However, gria1 KOs over-responded during extinction. The KOs were unable initially to learn a new response to access a cue previously conditioned to cocaine (conditioned reinforcement (CR)), although a second test 2 months later revealed that this was a transient deficit. These studies indicate that GluR1-containing AMPA-receptors are not involved in cocaine self-administration, cue-induced reinstatement of cocaine seeking, or incubation of the cocaine seeking response. In order to understand the specificity of the deficits in CR responding, a parallel study was performed with food reward. As with cocaine, there were no effects of gria1 deletion on food self-administration or cue-induced reinstatement, and KOs over-responded during extinction. However, even immediately after instrumental training for food, KO mice demonstrated responding for CR, suggesting that the CR deficit observed with a cocaine cue is specific to drug reward. These data indicate that GluR1-containing AMPA receptors are important in stimulus reward learning, though the method of cue-reward association formation, the reward class, and the behavioral end point are critical variables in determining their involvement.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/efeitos adversos , Sinais (Psicologia) , Receptores de AMPA/efeitos dos fármacos , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/efeitos adversos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Ácido Glutâmico/metabolismo , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Knockout , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Reforço Psicológico , Autoadministração , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
18.
Front Behav Neurosci ; 11: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261068

RESUMO

Variations in genes encoding several GABAA receptors have been associated with human drug and alcohol abuse. Among these, a number of human studies have suggested an association between GABRB1, the gene encoding GABAA receptor ß1 subunits, with Alcohol dependence (AD), both on its own and comorbid with other substance dependence and psychiatric illnesses. In the present study, we hypothesized that the GABRB1 genetically-associated increased risk for developing alcoholism may be associated with impaired behavioral control and altered sensitivity to reward, as a consequence of altered brain function. Exploiting the IMAGEN database (Schumann et al., 2010), we explored in a human adolescent population whether possession of the minor (T) variant of the single nucleotide polymorphism (SNP) rs2044081 is associated with performance of tasks measuring aspects of impulsivity, and reward sensitivity that are implicated in drug and alcohol abuse. Allelic variation did not associate with altered performance in either a stop-signal task (SST), measuring one aspect of impulsivity, or a monetary incentive delay (MID) task assessing reward anticipation. However, increased functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) response in the right hemisphere inferior frontal gyrus (IFG), left hemisphere caudate/insula and left hemisphere inferior temporal gyrus (ITG) during MID performance was higher in the minor (T) allelic group. In contrast, during SST performance, the BOLD response found in the right hemisphere supramarginal gyrus, right hemisphere lingual and left hemisphere inferior parietal gyrus indicated reduced responses in the minor genotype. We suggest that ß1-containing GABAA receptors may play a role in excitability of brain regions important in controlling reward-related behavior, which may contribute to susceptibility to addictive behavior.

19.
Psychopharmacology (Berl) ; 185(2): 188-200, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16470400

RESUMO

RATIONALE: Increased anxiety is a characteristic of the acute ethanol withdrawal syndrome. Repeated exposure of rats to withdrawal from chronic ethanol increases sensitivity to seizures. OBJECTIVES: We investigated whether repeated withdrawal experience increases withdrawal-induced anxiety and stress, and if it changes withdrawal-induced activation of related brain areas. METHODS: Rats were chronically treated with an ethanol-containing liquid diet either for 24 days continuously (single withdrawal, SWD) or interspersed with 2x3-day withdrawal periods (repeated withdrawal, RWD), or with a control diet. Eight hours after ethanol withdrawal, anxiety-like behaviour was tested in the elevated plus-maze, blood corticosterone levels were measured, and expression level of markers of neuronal activity and plasticity, c-fos and zif268, was assessed. RESULTS: Eight hours after ethanol withdrawal, SWD rats showed increased anxiety on the elevated plus-maze relative to control rats. Rats given previous withdrawal experiences did not show further increases in measures of anxiety. Corticosterone levels were elevated during withdrawal in SWD rats but not in RWD rats. RWD resulted in marked increases in c-fos expression in amygdala, hippocampus, nucleus accumbens and dorsolateral periaqueductal grey. In contrast, zif268 expression was not increased after RWD, and in central amygdala the marked increase in zif268 seen after SWD was absent after RWD. CONCLUSIONS: The data suggest increased ability of withdrawal to activate neuronal circuits but reduced plasticity after RWD. We suggest parallels between the consequences of repeated ethanol withdrawal and repeated exposure to stress, and discuss implications of withdrawal for brain plasticity.


Assuntos
Ansiedade/metabolismo , Corticosterona/sangue , Etanol/efeitos adversos , Sistema Límbico/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/fisiopatologia
20.
Brain Res ; 1102(1): 39-43, 2006 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16806122

RESUMO

Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons.


Assuntos
Depressores do Sistema Nervoso Central/farmacocinética , Cerebelo/efeitos dos fármacos , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Manobra Psicológica , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Tempo , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Receptor de GluK2 Cainato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA