Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35205519

RESUMO

Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.

2.
Entropy (Basel) ; 22(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-33286737

RESUMO

To perform statistical inference for time series, one should be able to assess if they present deterministic or stochastic trends. For univariate analysis, one way to detect stochastic trends is to test if the series has unit roots, and for multivariate studies it is often relevant to search for stationary linear relationships between the series, or if they cointegrate. The main goal of this article is to briefly review the shortcomings of unit root and cointegration tests proposed by the Bayesian approach of statistical inference and to show how they can be overcome by the Full Bayesian Significance Test (FBST), a procedure designed to test sharp or precise hypothesis. We will compare its performance with the most used frequentist alternatives, namely, the Augmented Dickey-Fuller for unit roots and the maximum eigenvalue test for cointegration.

3.
Entropy (Basel) ; 20(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33265127

RESUMO

There are several electricity generation technologies based on different sources such as wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the future costs of such technologies is crucial for planning purposes. In the literature, the allocation of resources in the available technologies has been solved as a mean-variance optimization problem assuming knowledge of the expected values and the covariance matrix of the costs. However, in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations from the mean-variance optimization are not robust to possible estimation errors of such parameters. Additionally, it is usual to have electricity generation technology specialists participating in the planning processes and, obviously, the consideration of useful prior information based on their previous experience is of utmost importance. The Bayesian models consider not only the uncertainty in the parameters, but also the prior information from the specialists. In this paper, we introduce the classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning problem using both improper and proper prior distributions for the parameters. In order to illustrate our approach, we present an application comparing the classical-equivalent Bayesian with the naive mean-variance optimal portfolios.

4.
Genet Mol Biol ; 32(3): 619-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21637528

RESUMO

Much forensic inference based upon DNA evidence is made assuming Hardy-Weinberg Equilibrium (HWE) for the genetic loci being used. Several statistical tests to detect and measure deviation from HWE have been devised, and their limitations become more obvious when testing for deviation within multiallelic DNA loci. The most popular methods-Chi-square and Likelihood-ratio tests-are based on asymptotic results and cannot guarantee a good performance in the presence of low frequency genotypes. Since the parameter space dimension increases at a quadratic rate on the number of alleles, some authors suggest applying sequential methods, where the multiallelic case is reformulated as a sequence of "biallelic" tests. However, in this approach it is not obvious how to assess the general evidence of the original hypothesis; nor is it clear how to establish the significance level for its acceptance/rejection. In this work, we introduce a straightforward method for the multiallelic HWE test, which overcomes the aforementioned issues of sequential methods. The core theory for the proposed method is given by the Full Bayesian Significance Test (FBST), an intuitive Bayesian approach which does not assign positive probabilities to zero measure sets when testing sharp hypotheses. We compare FBST performance to Chi-square, Likelihood-ratio and Markov chain tests, in three numerical experiments. The results suggest that FBST is a robust and high performance method for the HWE test, even in the presence of several alleles and small sample sizes.

5.
Genet. mol. biol ; 32(3): 619-625, 2009. ilus, graf
Artigo em Inglês | LILACS | ID: lil-522333

RESUMO

Much forensic inference based upon DNA evidence is made assuming Hardy-Weinberg Equilibrium (HWE) for the genetic loci being used. Several statistical tests to detect and measure deviation from HWE have been devised, and their limitations become more obvious when testing for deviation within multiallelic DNA loci. The most popular methods-Chi-square and Likelihood-ratio tests-are based on asymptotic results and cannot guarantee a good performance in the presence of low frequency genotypes. Since the parameter space dimension increases at a quadratic rate on the number of alleles, some authors suggest applying sequential methods, where the multiallelic case is reformulated as a sequence of "biallelic" tests. However, in this approach it is not obvious how to assess the general evidence of the original hypothesis; nor is it clear how to establish the significance level for its acceptance/rejection. In this work, we introduce a straightforward method for the multiallelic HWE test, which overcomes the aforementioned issues of sequential methods. The core theory for the proposed method is given by the Full Bayesian Significance Test (FBST), an intuitive Bayesian approach which does not assign positive probabilities to zero measure sets when testing sharp hypotheses. We compare FBST performance to Chi-square, Likelihood-ratio and Markov chain tests, in three numerical experiments. The results suggest that FBST is a robust and high performance method for the HWE test, even in the presence of several alleles and small sample sizes.


Assuntos
Humanos , Alelos , Genética Populacional , Modelos Estatísticos , Teorema de Bayes , Genótipo , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA