Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396686

RESUMO

Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end. The conjugates synthesized include those with di- and polyamines that introduce a positively charged side chain to potentially assist the intracellular delivery of the oligonucleotide.


Assuntos
Oligonucleotídeos , Fosfatos , Oligonucleotídeos/química , Azidas , Amidas/química , Ésteres
2.
Proc Natl Acad Sci U S A ; 117(51): 32370-32379, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288723

RESUMO

The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of µ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of µ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , MicroRNAs/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Ácidos Fosfóricos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos SCID , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958961

RESUMO

A template-assisted assembly approach to a C24 fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- or four-way branched junctions. A four-way branched oligonucleotide building block (a starlet) was designed for the assembly of the shell composed of three identical self-complementary DNA single strands and a single RNA strand for hybridization to the DNA oligonucleotides of the template. To prevent premature auto-hybridization of the self-complementary oligonucleotides in the starlet, a photolabile protecting group was introduced via the N3-substituted thymidine phosphoramidite. Cleavable linkers such as a disulfide linkage, RNase A sensitive triribonucleotides, and di- and trideoxynucleotides were incorporated into the starlet and template at specific points to guide the post-assembly disconnection of the shell from the template, and enzymatic disassembly of the template and the shell in biological media. At the same time, siRNA strands were modified with 2'-OMe ribonucleotides and phosphorothioate groups in certain positions to stabilize toward enzymatic digestion. We report herein a solid-phase synthesis of branched oligodeoxy and oligoribonucleotide building blocks for the DNA/RNA dendritic template and the branched DNA starlet for a template-assisted construction of a C24 fullerene-like DNA shell after initial molecular modeling, followed by the assembly of the shell around the DNA-coated RNA dendritic template, and visualization of the resulting nanostructure by transmission electron microscopy.


Assuntos
Fulerenos , Nanoestruturas , Oligorribonucleotídeos/química , DNA/química , Nanoestruturas/química , Oligonucleotídeos/química , RNA Interferente Pequeno , Conformação de Ácido Nucleico
4.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768766

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 µM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.


Assuntos
Benzofuranos/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Sulfetos/química , Benzofuranos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Relação Estrutura-Atividade , Sulfetos/farmacologia , Sulfóxidos/química , Sulfóxidos/farmacologia , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia
5.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500849

RESUMO

Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.


Assuntos
Peptídeos Penetradores de Células/química , Preparações de Ação Retardada/química , Oligonucleotídeos/química , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/metabolismo , Química Click , Liberação Controlada de Fármacos , Humanos , Ácidos Nucleicos , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/química , Técnicas de Síntese em Fase Sólida
6.
Chembiochem ; 21(17): 2455-2466, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32281223

RESUMO

A quaternary ammonium butylsulfonyl phosphoramidate group (N+) was designed to replace all the phosphates in a G-rich oligodeoxynucleotide d(TG4 T), resulting in a formally charge-neutral zwitterionic N+TG4 T sequence. We evaluated the effects of N+phosphate modifications on the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes (G4) formed by TG4 T and compared them to the properties of the recently published phosphoryl guanidine d(TG4 T) (PG-TG4 T). Using size-exclusion chromatography, we established that, unlike PG-TG4 T, which exists as a mixture of complexes of different molecularity in solution, N+TG4 T forms an individual tetramolecular complex. In contrast to PG modifications that destabilized G4s, the presence of N+ modifications increased thermal stability relative to unmodified [d(TG4 T)]4 . The initial stage of assembly of N+TG4 T proceeded faster in the presence of Na+ than K+ ions and, similarly to PG-TG4 T, was independent of the salt concentration. However, after complex formation exceeded 75 %, N+TG4 T in solution with Na+ showed slower association than with K+ . N+TG4 T could also form G4s in solution with Li+ ions at a very low strand concentration (10 µM); something that has never been reported for the native d(TG4 T). Charge-neutral PG-G4s can invade preformed native G4s, whereas no invasion was observed between N+and native G4s, possibly due to the increased thermal stability of [N+TG4 T]4 . The N+ modification makes d(TG4 T) fully resistant to enzymatic digestion, which could be useful for intracellular application of N+-modified DNA or RNA.


Assuntos
DNA/síntese química , Oligodesoxirribonucleotídeos/química , Fosfatos/química , DNA/química , Quadruplex G , Potássio/química , Sódio/química
7.
Biochem Biophys Res Commun ; 513(4): 807-811, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31000201

RESUMO

Recently, a new type of nucleic acid analogues with modified phosphate group, namely, phosphoryl guanidine oligonucleotides, has been described. In the present work, we assess the difference between diastereomers of a mono-substituted phosphoryl guanidine oligonucleotide and analyze their resistance to nuclease digestion. Individual diastereomers ('fast' and 'slow') of a trideoxynucleotide d (TpCp*A) were isolated by reverse-phase HPLC. Snake venom phosphodiesterase digestion showed that the native trideoxynucleotide was fully degraded after 30 min, whereas both 'fast' and 'slow' diastereomers of d (TpCp*A) were not completely digested even after 7 days. UV and CD spectra revealed similarities in the structure of the diastereomers. Structural analysis by 1D and 2D NMR spectroscopy also uncovered significant similarity in the properties of Rp and Sp diastereomers. Structural analysis of nuclear Overhauser effect spectroscopy (NOESY) data and restrained molecular dynamics methods showed very flexible single-stranded oligonucleotide structures. Detailed computational analysis of restraint penalty energies via restrained molecular dynamics simulations with the 2D NMR interproton distance data allowed us to conclude that most likely, the 'fast' isomer is the Sp diastereomer, and the 'slow' isomer is the Rp diastereomer.


Assuntos
Guanidina/química , Oligonucleotídeos/química , Fosfatos/química , Dicroísmo Circular , Guanidina/isolamento & purificação , Espectroscopia de Ressonância Magnética , Oligonucleotídeos/isolamento & purificação , Diester Fosfórico Hidrolases/metabolismo , Espectrofotometria Ultravioleta , Estereoisomerismo , Termodinâmica
8.
Anal Biochem ; 555: 9-11, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29864402

RESUMO

Analysis and isolation of new charge-neutral phosphoryl guanidine oligonucleotides (PGO) by vertical slab electrophoresis were tested at different pH values (3-11) or in the presence of SDS as a micelle-forming agent. The most convenient way to analyze and purify phosphoryl guanidine oligonucleotides was by denaturing PAGE (8 M urea) at pH 3. The mobility of PGO is dependent on their A + C content. To analyze PGO containing only G, T or U, denaturing PAGE at pH 11 can be used, although the conditions need to be optimized. Bands were visualized by UV shadowing or Coomassie Brilliant Blue staining.


Assuntos
DNA/análise , Eletroforese em Gel de Poliacrilamida , Guanidina/química , Oligonucleotídeos/análise , RNA/análise
9.
Bioorg Med Chem Lett ; 28(7): 1248-1251, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29506959

RESUMO

A conjugate of triphosphorylated 2',3'-dideoxyuridine (ddU) with SiO2 nanoparticles was obtained via the CuAAC click chemistry between a γ-alkynyl ddU triphosphate and azido-modified SiO2 nanoparticles. Assessment of cytotoxicity in human breast adenocarcinoma MCF7 cells demonstrated that ddU triphosphate conjugated to SiO2 nanoparticles exhibited a 50% decrease in cancer cell growth at a concentration of 183 ±â€¯57 µg/mL, which corresponds to 22 ±â€¯7 µM of the parent nucleotide, whereas the parent nucleoside, nucleotide and alkynyl triphosphate precursor do not show any cytotoxicity. The data provide an example of remarkable potential of novel conjugates of SiO2 nanoparticles with phosphorylated nucleoside analogues, even those, which have not been used previously as therapeutics, for application as new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Didesoxinucleotídeos/farmacologia , Nanopartículas/química , Dióxido de Silício/farmacologia , Nucleotídeos de Uracila/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Didesoxinucleotídeos/síntese química , Didesoxinucleotídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Dióxido de Silício/química , Relação Estrutura-Atividade , Nucleotídeos de Uracila/síntese química , Nucleotídeos de Uracila/química
10.
Bioorg Med Chem ; 26(15): 4470-4480, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076000

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a repair enzyme for stalled DNA-topoisomerase 1 (Top 1) cleavage complexes and other 3'-end DNA lesions. Tdp1 is a promising target for anticancer therapy, since it can repair DNA lesions caused by Top1 inhibitors leading to drug resistance. Hence, Tdp1 inhibition should result in synergistic effect with Top1 inhibitors. Twenty nine derivatives of (+)-usnic acid were tested for in vitro Tdp1 inhibitory activity using a fluorescent-based assay. Excellent activity was obtained, with derivative 6m demonstrating the lowest IC50 value of 25 nM. The established efficacy was verified using a gel-based assay, which gave close results to that of the fluorescent assay. In addition, molecular modeling in the Tdp1 substrate binding pocket suggested plausible binding modes for the active analogues. The synergistic effect of the Tdp1 inhibitors with topotecan, a Top1 poison in clinical use, was tested in two human cell lines, A-549 and HEK-293. Compounds 6k and 6x gave very promising results. In particular, 6x has a low cytotoxicity and an IC50 value of 63 nM, making it a valuable lead compound for the development of potent Tdp1 inhibitors for clinical use.


Assuntos
Benzofuranos/química , Inibidores de Fosfodiesterase/síntese química , Diester Fosfórico Hidrolases/química , Regulação Alostérica , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/síntese química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Furanos/química , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Molecules ; 23(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563296

RESUMO

The formation of a guanine quadruplex DNA structure (G4) is known to repress the expression of certain cancer-related genes. Consequently, a mutated G4 sequence can affect quadruplex formation and induce cancer progression. In this study, we developed an oligonucleotide derivative consisting of a ligand-containing guanine tract that replaces the mutated G4 guanine tract at the promoter of the vascular endothelial growth factor (VEGF) gene. A ligand moiety consisting of three types of polyaromatic hydrocarbons, pyrene, anthracene, and perylene, was attached to either the 3' or 5' end of the guanine tract. Each of the ligand-conjugated guanine tracts, with the exception of anthracene derivatives, combined with other intact guanine tracts to form an intermolecular G4 on the mutated VEGF promoter. This intermolecular G4, exhibiting parallel topology and high thermal stability, enabled VEGF G4 formation to be recovered from the mutated sequence. Stability of the intramolecular G4 increased with the size of the conjugated ligand. However, suppression of intermolecular G4 replication was uniquely dependent on whether the ligand was attached to the 3' or 5' end of the guanine tract. These results indicate that binding to either the top or bottom guanine quartet affects unfolding kinetics due to polarization in DNA polymerase processivity. Our findings provide a novel strategy for recovering G4 formation in case of damage, and fine-tuning processes such as replication and transcription.


Assuntos
Quadruplex G , Oligonucleotídeos , Replicação do DNA , Guanina , Humanos , Ligantes , Mutação , Oligonucleotídeos/química , Oligonucleotídeos/genética , Regiões Promotoras Genéticas , Fator A de Crescimento do Endotélio Vascular/genética
12.
Bioorg Med Chem ; 25(5): 1696-1702, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169081

RESUMO

Conjugates of phosphorylated dideoxynucleoside antiviral drugs dideoxycytidine (zalcitabine) and lamivudine with SiO2 nanoparticles were obtained via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry between a nucleoside triphosphate containing an alkynyl group at the γ-phosphate or azidothymidine triphosphate and SiO2 nanoparticles containing alkyl azide or alkynyl groups, respectively. 4-(Prop-2-yn-1-yloxy)butylamino group has been attached to the γ-phosphate group of dideoxycytidine (zalcitabine) and lamivudine 5'-triphosphates via the phosphoramidate linkage. New compounds were shown to be potent killers of human colon carcinoma cells. Anti-HIV activity of the conjugates was demonstrated as well. The conjugates of phosphorylated lamivudine and dideoxycytidine (zalcitabine) showed higher potency than the parent nucleosides. The conjugate of phosphorylated azidothymidine was less active against HIV-1 than the parent nucleoside probably because of the replacement of its 3'-azido group by 1,2,3-triazole ring. These results show an opportunity for using SiO2 nanoparticles as a transport for delivering phosphorylated nucleosides to cells in order to increase their efficiency as antiviral and anticancer drugs.


Assuntos
Fármacos Anti-HIV/farmacologia , Proliferação de Células/efeitos dos fármacos , Química Click , Lamivudina/química , Nanopartículas/química , Dióxido de Silício/química , Zalcitabina/química , Linhagem Celular Transformada , HIV-1/efeitos dos fármacos , Humanos , Lamivudina/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Fosforilação , Espectrometria de Massas por Ionização por Electrospray , Zalcitabina/farmacologia
13.
Bioconjug Chem ; 26(10): 2046-53, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26335988

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) promotes catalytic scission of a phosphodiester bond between the 3'-end of DNA and the hydroxyl group of a tyrosine residue, as well as cleaving off a variety of other 3'-terminal phosphate-linked DNA substituents. We have shown recently that Tdp1 can initiate an apurinic/apyrimidinic (AP) site repair pathway that is independent from the one mediated by AP endonuclease 1 (APE1). Until recently, there was no method available of tracking the AP-site cleaving activity of Tdp1 by real-time fluorescence assay. In the present study we demonstrate a highly specific real-time detection of the AP-site cleaving activity of Tdp1 which allows one to distinguish it from the activity of APE1 by using a short hairpin oligonucleotide with a 1,12-dodecanediol loop, a 5'-fluorophore, and a 3'-quencher. Specific phosphodiesterase activity of Tdp1, which is usually able to remove quencher from the 3'-end of DNA, was suppressed in our approach by introducing a noncleavable phosphate group mimic between the 3'-end and the quencher. As a nondigestible 3'-phosphate analogue, we have used a new uncharged tetramethyl phosphoryl guanidine (Tmg) group, which is resistant to 3'-phosphodiesterase cleavage.


Assuntos
Ácido Apurínico/metabolismo , Bioensaio/métodos , Oligonucleotídeos/química , Diester Fosfórico Hidrolases/metabolismo , Polinucleotídeos/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Corantes Fluorescentes/química , Cinética , Microscopia de Fluorescência , Mutação , Oligonucleotídeos/metabolismo , Diester Fosfórico Hidrolases/análise , Diester Fosfórico Hidrolases/genética , Especificidade por Substrato
14.
J Nanosci Nanotechnol ; 15(6): 4170-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369026

RESUMO

Self-assembly of DNA concatemers from native duplexes and those containing non-nucleotidic bridges of varying polarity composed of repeating oligo(ethylene glycol) phosphates -O(CH2CH2O)(n)PO2- or α,Ω-alkanediol phosphates -O(CH2)10OPO2(-)- units was compared. The structures obtained were characterised by polyacrylamide gel electrophoresis, enzymatic digestion and AFM. Our results have revealed that chemically-modified duplexes favour self-termination of concatemer growth and yield up to 35% of nanosized DNA rings.


Assuntos
DNA Concatenado/química , Etilenoglicol/química , Nanoestruturas/química , Sequência de Bases , DNA Concatenado/metabolismo , Desoxirribonucleases/metabolismo , Microscopia de Força Atômica , Dados de Sequência Molecular , Oligonucleotídeos
15.
Langmuir ; 28(33): 12209-15, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22834769

RESUMO

Studying peptide amphiphiles (PAs), we investigate the influence of alkyl chain length on the aggregation behavior of the collagen-derived peptide KTTKS with applications ranging from antiwrinkle cosmetic creams to potential uses in regenerative medicine. We have studied synthetic peptides amphiphiles C(14)-KTTKS (myristoyl-Lys-Thr-Thr-Lys-Ser) and C(18)-KTTKS (stearoyl-Lys-Thr-Thr-Lys-Ser) to investigate in detail their physicochemical properties. It is presumed that the hydrophobic chain in these self-assembling peptide amphiphiles enhances peptide permeation across the skin compared to KTTKS alone. Subsequently C(n)-KTTKS should act as a prodrug and release the peptide by enzymatic cleavage. Our results should be useful in the further development of molecules with collagen-stimulating activity.


Assuntos
Colágeno/química , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Humanos , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Permeabilidade , Multimerização Proteica , Estrutura Secundária de Proteína , Pele/metabolismo
16.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139555

RESUMO

Rational combinations of sequence-specific inhibitors of pro-oncogenic miRNAs can efficiently interfere with specific tumor survival pathways, offering great promise for targeted therapy of oncological diseases. Herein, we uncovered the potential of multicomponent therapy by double or triple combinations of highly potent mesyl phosphoramidate (µ) antisense oligodeoxynucleotides targeted to three proven pro-oncogenic microRNAs-miR-17, miR-21, and miR-155. A strong synergism in the inhibition of proliferation and migration of B16 melanoma cells was demonstrated in vitro for pairs of µ-oligonucleotides, which resulted in vivo in profound inhibition (up to 85%) of lung metastases development after intravenous injection of µ-oligonucleotide-transfected B16 cells in mice. A clear benefit of µ-21-ON/µ-17-ON and µ-17-ON/µ-155-ON/µ-21-ON combination antitumor therapy was shown for the lymphosarcoma RLS40 solid tumor model. In vivo administration of the µ-17-ON/µ-155-ON/µ-21-ON cocktail into RLS40-bearing mice elicited fourfold delay of tumor growth as a result of strong inhibition of tumor mitotic activity. It was discovered that the cocktail of µ-21-ON/µ-17-ON/µ-155-ON led to a twofold decrease in total destructive changes in murine liver, which indicates both the reduction in toxic tumor burden and the absence of specific toxicity of the proposed therapy.

17.
Mol Ther Nucleic Acids ; 27: 211-226, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976439

RESUMO

Antisense gapmer oligonucleotides containing phosphoryl guanidine (PG) groups, e.g., 1,3-dimethylimidazolidin-2-imine, at three to five internucleotidic positions adjacent to the 3' and 5' ends were prepared via the Staudinger chemistry, which is compatible with conditions of standard automated solid-phase phosphoramidite synthesis for phosphodiester and, notably, phosphorothioate linkages, and allows one to design a variety of gapmeric structures with alternating linkages, and deoxyribose or 2'-O-methylribose backbone. PG modifications increased nuclease resistance in serum-containing medium for more than 21 days. Replacing two internucleotidic phosphates by PG groups in phosphorothioate-modified oligonucleotides did not decrease their cellular uptake in the absence of lipid carriers. Increasing the number of PG groups from two to seven per oligonucleotide reduced their ability to enter the cells in the carrier-free mode. Cationic liposomes provided similar delivery efficiency of both partially PG-modified and unmodified oligonucleotides. PG-gapmers were designed containing three to four PG groups at both wings and a central "window" of seven deoxynucleotides with either phosphodiester or phosphorothioate linkages targeted to MDR1 mRNA providing multiple drug resistance of tumor cells. Gapmers efficiently silenced MDR1 mRNA and restored the sensitivity of tumor cells to chemotherapeutics. Thus, PG-gapmers can be considered as novel, promising types of antisense oligonucleotides for targeting biologically relevant RNAs.

18.
J Biomed Res ; 37(3): 194-212, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37161885

RESUMO

To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells ex vivo. Comparative analysis of the antitumor effects of in situ vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted. Antibodies against programmed death 1 (PD1) checkpoint inhibitors or their corresponding PD1 DNA aptamers were also added to vaccination regimens for analytical purposes. Four scenarios were considered: a weakly immunogenic Krebs-2 carcinoma grafted in CBA mice; a moderately immunogenic Lewis carcinoma grafted in C57Black/6 mice; and an immunogenic A20 B cell lymphoma or an Ehrlich carcinoma grafted in BALB/c mice. Adding anti-PD1 antibodies (CpG+αOX40+αPD1) to in situ vaccinations boosts the antitumor effect. When to be used instead of antibodies, aptamers also possess antitumor activity, although this effect was less pronounced. The strongest effect across all the tumors was observed in highly immunogenic A20 B cell lymphoma and Ehrlich carcinoma.

19.
Nucleic Acid Ther ; 31(3): 190-200, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33989066

RESUMO

A series of 2'-deoxy and novel 2'-O-methyl and 2'-O-(2-methoxyethyl) (2'-MOE) oligonucleotides with internucleotide methanesulfonyl (mesyl, µ) or 1-butanesulfonyl (busyl, ß) phosphoramidate groups has been synthesized for evaluation as potential splice-switching oligonucleotides. Evaluation of their splice-switching activity in spinal muscular atrophy patient-derived fibroblasts revealed no significant difference in splice-switching efficacy between 2'-MOE mesyl oligonucleotide and the corresponding phosphorothioate (nusinersen). Yet, a survival study with model neonatal mice has shown the antisense 2'-MOE mesyl oligonucleotide to be inferior to nusinersen at the highest dose of 40 mg/kg. A reason for their lower activity in vivo as ascertained by cellular uptake study by fluorescent confocal microscopy in HEK293 cell line could possibly be ascribed to compromised endosomal release and/or nuclear uptake of the 2'-OMe or 2'-MOE µ- and ß-oligonucleotides compared to their phosphorothioate analog.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos , Amidas , Animais , Células HEK293 , Humanos , Camundongos , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Ácidos Fosfóricos
20.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230133

RESUMO

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Assuntos
Antineoplásicos/imunologia , Imunoterapia/métodos , Animais , Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/imunologia , DNA/imunologia , Feminino , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Neoplásicas/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores OX40/imunologia , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA