Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(26): 8716-27, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24966372

RESUMO

Calsyntenin-1 is a transmembrane cargo-docking protein important for kinesin-1-mediated fast transport of membrane-bound organelles that exhibits peak expression levels at postnatal day 7. However, its neuronal function during postnatal development remains unknown. We generated a knock-out mouse to characterize calsyntenin-1 function in juvenile mice. In the absence of calsyntenin-1, synaptic transmission was depressed. To address the mechanism, evoked EPSPs were analyzed revealing a greater proportion of synaptic GluN2B subunit-containing receptors typical for less mature synapses. This imbalance was due to a disruption in calsyntenin-1-mediated dendritic transport of NMDA receptor subunits. As a consequence of increased expression of GluN2B subunits, NMDA receptor-dependent LTP was enhanced at Schaffer collateral-CA1 pyramidal cell synapses. Interestingly, these defects were accompanied by a decrease in dendritic arborization and increased proportions of immature filopodia-like dendritic protrusions at the expense of thin-type dendritic spines in CA1 pyramidal cells. Thus, these results highlight a key role for calsyntenin-1 in the transport of NMDA receptors to synaptic targets, which is necessary for the maturation of neuronal circuits during early development.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Knockout , Células Piramidais/citologia , Células Piramidais/crescimento & desenvolvimento , Sinapses/fisiologia
2.
Traffic ; 10(5): 572-89, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19192245

RESUMO

Kinesin motors are required for the export of membranous cargo from the trans-Golgi network (TGN), yet information about how kinesins are recruited to forming transport intermediates is sparse. Here we show that the Kinesin-1 docking protein calsyntenin-1 localizes to the TGN in vivo and directly and specifically recruits Kinesin-1 to Golgi/TGN membranes as well as to dynamic post-Golgi carriers. Overexpression of various calsyntenin chimeras and kinesin light chain 1 (KLC1) at high levels caused the formation of aberrant membrane stacks at the endoplasmic reticulum (ER) or the Golgi, disrupted overall Golgi structure and blocked exit of calsyntenin from the TGN. Intriguingly, this blockade of calsyntenin exit strongly and selectively impeded TGN exit of amyloid precursor protein (APP). Using live cell microscopy we found that calsyntenins exit the TGN in Kinesin-1-decorated tubular structures which may serve as carriers for calsyntenin-1-mediated post-TGN transport of APP. Abrogation of this pathway via virus-mediated knockdown of calsyntenin-1 expression in primary cultured neurons caused a marked elevation of APP C-terminal fragments. Together, these results indicate a role for calsyntenin-1 in Kinesin-1-dependent TGN exit and post-Golgi transport of APP-containing organelles and further suggest that distinct intracellular routes may exhibit different capacities for proteolytic processing of APP.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Transporte Biológico , Humanos
3.
Proteomics ; 10(21): 3775-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20925061

RESUMO

Kinesin motors play crucial roles in the delivery of membranous cargo to its destination and thus for the establishment and maintenance of cellular polarization. Recently, calsyntenin-1 was identified as a cargo-docking protein for Kinesin-1-mediated axonal transport of tubulovesicular organelles along axons of central nervous system neurons. To further define the function of calsyntenin-1, we immunoisolated calsyntenin-1 organelles from murine brain homogenates and determined their proteome by MS. We found that calsyntenin-1 organelles are endowed with components of the endosomal trafficking machinery and contained the ß-amyloid precursor protein (APP). Detailed biochemical analyses of calsyntenin-1 immunoisolates in conjunction with immunocytochemical colocalization studies with cultured hippocampal neurons, using endosomal marker proteins for distinct subcompartments of the endosomal pathways, indicated that neuronal axons contain at least two distinct, nonoverlapping calsyntenin-1-containing transport packages: one characterized as early-endosomal, APP positive, the other as recycling-endosomal, APP negative. We postulate that calsyntenin-1 acts as a general mediator of anterograde axonal transportation of endosomal vesicles. In this role, calsyntenin-1 may actively contribute to axonal growth and pathfinding in the developing as well as to the maintenance of neuronal polarity in the adult nervous system; further, it may actively contribute to the stabilization of APP during its anterograde axonal trajectory.


Assuntos
Axônios/metabolismo , Transporte Biológico/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Endossomos/química , Proteômica/métodos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas de Ligação ao Cálcio/química , Eletroforese em Gel de Poliacrilamida , Endocitose/fisiologia , Endossomos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Cinesinas/química , Cinesinas/metabolismo , Camundongos , Prosencéfalo/citologia , Prosencéfalo/metabolismo
4.
Mol Biol Cell ; 17(8): 3651-63, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16760430

RESUMO

We identified a direct interaction between the neuronal transmembrane protein calsyntenin-1 and the light chain of Kinesin-1 (KLC1). GST pulldowns demonstrated that two highly conserved segments in the cytoplasmic domain of calsyntenin-1 mediate binding to the tetratricopeptide repeats of KLC1. A complex containing calsyntenin-1 and the Kinesin-1 motor was isolated from developing mouse brain and immunoelectron microscopy located calsyntenin-1 in association with tubulovesicular organelles in axonal fiber tracts. In primary neuronal cultures, calsyntenin-1-containing organelles were aligned along microtubules and partially colocalized with Kinesin-1. Using live imaging, we showed that these organelles are transported along axons with a velocity and processivity typical for fast axonal transport. Point mutations in the two kinesin-binding segments of calsyntenin-1 significantly reduced binding to KLC1 in vitro, and vesicles bearing mutated calsyntenin-1 exhibited a markedly altered anterograde axonal transport. In summary, our results indicate that calsyntenin-1 links a certain type of vesicular and tubulovesicular organelles to the Kinesin-1 motor.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Sequência Conservada , Cones de Crescimento/metabolismo , Células HeLa , Humanos , Cinesinas , Camundongos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley
5.
Biol Open ; 1(8): 761-74, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213470

RESUMO

Endocytosis of amyloid-ß precursor protein (APP) is thought to represent the major source of substrate for the production of the amyloidogenic Aß peptide by the ß-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aß secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA