Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171593, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479525

RESUMO

Pollen allergies, such as allergic rhinitis, are triggered by exposure to airborne pollen. They are a considerable global health burden, with their numbers expected to rise in the coming decades due to the advent of climate change and air pollution. The relationships that exist between pollens, meteorological, and environmental conditions are complex due to a lack of clarity on the nature and conditions associated with these interactions; therefore, it is challenging to describe their direct impacts on allergenic potential clearly. This article attempts to review evidence pertaining to the possible influence of meteorological factors and air pollutants on the allergic potential of pollen by studying the interactions that pollen undergoes, from its inception to atmospheric traversal to human exposure. This study classifies the evidence based on the nature of these interactions as physical, chemical, source, and biological, thereby simplifying the complexities in describing these interactions. Physical conditions facilitating pollen rupturing for tree, grass, and weed pollen, along with their mechanisms, are studied. The effects of pollen exposure to air pollutants and their impact on pollen allergenic potential are presented along with the possible outcomes following these interactions, such as pollen fragmentation (SPP generation), deposition of particulate matter on pollen exine, and modification of protein levels in-situ of pollen. This study also delves into evidence on plant-based (source and biological) interactions, which could indirectly influence the allergic potential of pollen. The current state of knowledge, open questions, and a brief overview of future research directions are outlined and discussed. We suggest that future studies should utilise a multi-disciplinary approach to better understand this complex system of pollen interactions that occur in nature.


Assuntos
Poluentes Atmosféricos , Hipersensibilidade , Rinite Alérgica Sazonal , Humanos , Pólen , Rinite Alérgica Sazonal/epidemiologia , Rinite Alérgica Sazonal/etiologia , Alérgenos
2.
Anal Methods ; 16(11): 1579-1592, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38407576

RESUMO

Phthalates or phthalic acid esters (PAE) and bis(2-ethylhexyl)adipate (DEHA) are ubiquitous chemicals often used as plasticisers and additives in many industrial products and are classified as both persistent organic pollutants (POPs) and new emerging pollutants (NEPs). Exposure to these chemicals, especially through inhalation, is linked to a wide range of negative health effects, including endocrine disruption. Air particulate matter (PM) with an aerodynamic diameter ≤ 2.5 µm can be enriched with PAEs and DEHA and if inhaled can cause multi-system human toxicity. Therefore, proper monitoring of PAEs and DEHA in PM is required to assess human exposure to these pollutants. In this work, we developed and validated a new and sensitive gas-chromatography high-resolution mass spectrometry (GC-HRMS) method for targeted analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl)adipate (DEHA), bis(2-ethylhexyl)phthalate (DEHP), di-n-octyl phthalate (DOP), in PM. Analytical aspects including sample preparation steps and GC-HRMS parameters, e.g., quadrupole isolation window, to enhance method sensitivity have been assessed. The estimated limit of detection (LODs) of target PAEs and DEHA ranged from 5.5 to 17 pg µL-1, allowing their trace-level detection in PM. Extraction efficiencies of 78-101% were obtained for the target compounds. Low DMP and DEP extraction efficiencies from the spiked filter substrates indicated that significant losses of higher volatility PAEs can occur during the sample collection when filter-based techniques are used. This work is the first targeted method based on GC-Orbitrap MS for PAEs and DEHA in environmental samples. The validated method was successfully applied for the targeted analysis of PAEs and DEHA in PM2.5 samples from the eighth most populous city in Brazil, Curitiba. This work is the first to report DBP, DEHA, DEHP, and DOP in urban PM from Brazil. The observed concentrations of PAEs (up to 29 ng m-3) in PM2.5 from Curitiba may not represent the extent of pollution by these toxic compounds since the analysed samples were collected during a COVID-19 restriction when anthropogenic activities were reduced.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Humanos , Material Particulado/análise , Dietilexilftalato/análise , Ésteres/análise , Brasil , Ácidos Ftálicos/análise , Dibutilftalato/análise , Adipatos/análise , Poluentes Ambientais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA