Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13377-13390, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709577

RESUMO

Metal-organic frameworks (MOFs) offer an interesting opportunity for catalysis, particularly for metal-nitrogen-carbon (M-N-C) motifs by providing an organized porous structural pattern and well-defined active sites for the oxygen reduction reaction (ORR), a key need for hydrogen fuel cells and related sustainable energy technologies. In this work, we leverage electrochemical testing with computational models to study the electronic and structural properties in the MOF systems and their relationship to ORR activity and stability based on dual transitional metal centers. The MOFs consist of two M1 metals with amine nodes coordinated to a single M2 metal with a phthalocyanine linker, where M1/M2 = Co, Ni, or Cu. Co-based metal centers, in particular Ni-Co, demonstrate the highest overall activity of all nine tested MOFs. Computationally, we identify the dominance of Co sites, relative higher importance of the M2 site, and the role of layer M1 interactions on the ORR activity. Selectivity measurements indicate that M1 sites of MOFs, particularly Co, exhibit the lowest (<4%), and Ni demonstrates the highest (>46%) two-electron selectivity, in good agreement with computational studies. Direct in situ stability characterization, measuring dissolved metal ions, and calculations, using an alkaline stability metric, confirm that Co is the most stable metal in the MOF, while Cu exhibits notable instability at the M1. Overall, this study reveals how atomistic coupling of electronic and structural properties affects the ORR performance of dual site MOF catalysts and opens new avenues for the tunable design and future development of these systems for practical electrochemical applications.

2.
J Am Chem Soc ; 144(49): 22549-22561, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453840

RESUMO

Improving electrocatalyst stability is critical for the development of electrocatalytic devices. Herein, we utilize an on-line electrochemical flow cell coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to characterize the impact of composition and reactant gas on the multielement dissolution of Mn(-Cr)-Sb-O electrocatalysts. Compared to Mn2O3 and Cr2O3 oxides, the antimonate framework stabilizes Mn at OER potentials and Cr at both ORR and OER potentials. Furthermore, dissolution of Mn and Cr from Mn(-Cr) -Sb-O is driven by the ORR reaction rate, with minimal dissolution under N2. We observe preferential dissolution of Cr totaling 13% over 10 min at 0.3, 0.6, and 0.9 V vs RHE, with only 1.5% loss of Mn, indicating an enrichment of Mn at the surface of the particles. Despite this asymmetric dissolution, operando X-ray absorption spectroscopy (XAS) showed no measurable changes in the Mn K-edge at comparable potentials. This could suggest that modification to the Mn oxidation state and/or phase in the surface layer is too small or that the layer is too thin to be measured with the bulk XAS measurement. Lastly, on-line ICP-MS was used to assess the effects of applied potential, scan rate, and current on Mn-Cr-Sb-O during cyclic voltammetry and accelerated stress tests. With this deeper understanding of the interplay between oxygen reduction and dissolution, testing procedures were identified to maximize both activity and stability. This work highlights the use of multimodal in situ characterization techniques in tandem to build a more complete model of stability and develop protocols for optimizing catalyst performance.

3.
Angew Chem Int Ed Engl ; 59(10): 4043-4050, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919948

RESUMO

Ni,N-doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2 R) to CO; this activity has often been attributed to the presence of nitrogen-coordinated, single Ni atom active sites. However, experimentally confirming Ni-N bonding and correlating CO2 reduction (CO2 R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile-derived Ni,N-doped carbon electrocatalysts (Ni-PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2 R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X-ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square-planar geometry that strongly resembles the active sites of molecular metal-porphyrin catalysts.

4.
Nano Lett ; 17(11): 6922-6926, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991484

RESUMO

Nickel (oxy)hydroxide-based (NiOxHy) materials are widely used for energy storage and conversion devices. Understanding dynamic processes at the solid-liquid interface of nickel (oxy)hydroxide is important to improve reaction kinetics and efficiencies. In this study, in situ electrochemical atomic force microscopy (EC-AFM) was used to directly investigate dynamic changes of single-layered Ni(OH)2 nanosheets during electrochemistry measurements. Reconstruction of Ni(OH)2 nanosheets, along with insertion of ions from the electrolyte, results in an increase of the volume by 56% and redox capacity by 300%. We also directly observe Fe cations adsorb and integrate heterogeneously into or onto the nanosheets as a function of applied potential, further increasing apparent volume. Our findings are important for the fundamental understanding of NiOxHy-based supercapacitors and oxygen-evolution catalysts, illustrating the dynamic nature of Ni-based nanostructures under electrochemical conditions.

5.
Angew Chem Int Ed Engl ; 57(39): 12840-12844, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30112793

RESUMO

Iron cations are essential for the high activity of nickel and cobalt-based (oxy)hydroxides for the oxygen evolution reaction, but the role of iron in the catalytic mechanism remains under active investigation. Operando X-ray absorption spectroscopy and density functional theory calculations are used to demonstrate partial Fe oxidation and a shortening of the Fe-O bond length during oxygen evolution on Co(Fe)Ox Hy . Cobalt oxidation during oxygen evolution is only observed in the absence of iron. These results demonstrate a different mechanism for water oxidation in the presence and absence of iron and support the hypothesis that oxidized iron species are involved in water-oxidation catalysis on Co(Fe)Ox Hy .

6.
J Am Chem Soc ; 139(33): 11361-11364, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28789520

RESUMO

Fe is a critical component of record-activity Ni/Fe (oxy)hydroxide (Ni(Fe)OxHy) oxygen evolution reaction (OER) catalysts, yet its precise role remains unclear. We report evidence for different types of Fe species within Ni(Fe)OxHy- those that are rapidly incorporated into the Ni oxyhydroxide from Fe cations in solution (and that are likely at edges or defects) and are responsible for the enhanced OER activity, and those substituting for bulk Ni that modulate the observed Ni voltammetry. These results suggest that the exceptional OER activity of Ni(Fe)OxHy does not depend on Fe in the bulk or on average electrochemical properties of the Ni cations measured by voltammetry, and instead emphasize the role of the local structure.

8.
STAR Protoc ; 4(4): 102606, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924520

RESUMO

Renewable energy-driven bipolar membrane water electrolyzers (BPMWEs) are a promising technology for sustainable production of hydrogen from seawater and other impure water sources. Here, we present a protocol for assembling BPMWEs and operating them in a range of water feedstocks, including ultra-pure deionized water and seawater. We describe steps for membrane electrode assembly preparation, electrolyzer assembly, and electrochemical evaluation. For complete details on the use and execution of this protocol, please refer to Marin et al. (2023).1.


Assuntos
Água , Membranas
9.
ACS Nano ; 16(4): 6334-6348, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377139

RESUMO

The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as excellent electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates─MSb2O6, where M = Mn, Fe, Co, and Ni─as nonprecious metal catalysts with good oxygen binding energetics, conductivity, thermodynamic phase stability, and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e- ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by theoretical Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a framework to tune the activity and selectivity of nonprecious metal oxide active sites for ORR catalysis.

10.
Commun Chem ; 5(1): 20, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36697647

RESUMO

Platinum is an important material with applications in oxygen and hydrogen electrocatalysis. To better understand how its activity can be modulated through electrolyte effects in the double layer microenvironment, herein we investigate the effects of different acid anions on platinum for the oxygen reduction/evolution reaction (ORR/OER) and hydrogen evolution/oxidation reaction (HER/HOR) in pH 1 electrolytes. Experimentally, we see the ORR activity trend of HClO4 > HNO3 > H2SO4, and the OER activity trend of HClO4 [Formula: see text] HNO3 ∼ H2SO4. HER/HOR performance is similar across all three electrolytes. Notably, we demonstrate that ORR performance can be improved 4-fold in nitric acid compared to in sulfuric acid. Assessing the potential-dependent role of relative anion competitive adsorption with density functional theory, we calculate unfavorable adsorption on Pt(111) for all the anions at HER/HOR conditions while under ORR/OER conditions [Formula: see text] binds the weakest followed by [Formula: see text] and [Formula: see text]. Our combined experimental-theoretical work highlights the importance of understanding the role of anions across a large potential range and reveals nitrate-like electrolyte microenvironments as interesting possible sulfonate alternatives to mitigate the catalyst poisoning effects of polymer membranes/ionomers in electrochemical systems. These findings help inform rational design approaches to further enhance catalyst activity via microenvironment engineering.

11.
Nat Commun ; 12(1): 620, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504815

RESUMO

Alloying is a powerful tool that can improve the electrocatalytic performance and viability of diverse electrochemical renewable energy technologies. Herein, we enhance the activity of Pd-based electrocatalysts via Ag-Pd alloying while simultaneously lowering precious metal content in a broad-range compositional study focusing on highly comparable Ag-Pd thin films synthesized systematically via electron-beam physical vapor co-deposition. Cyclic voltammetry in 0.1 M KOH shows enhancements across a wide range of alloys; even slight alloying with Ag (e.g. Ag0.1Pd0.9) leads to intrinsic activity enhancements up to 5-fold at 0.9 V vs. RHE compared to pure Pd. Based on density functional theory and x-ray absorption, we hypothesize that these enhancements arise mainly from ligand effects that optimize adsorbate-metal binding energies with enhanced Ag-Pd hybridization. This work shows the versatility of coupled experimental-theoretical methods in designing materials with specific and tunable properties and aids the development of highly active electrocatalysts with decreased precious-metal content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA