Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Insect Mol Biol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864655

RESUMO

Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.

2.
Horm Behav ; 163: 105562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810363

RESUMO

The embryonic environment is critical in shaping developmental trajectories and consequently post-natal phenotypes. Exposure to elevated stress hormones during this developmental stage is known to alter a variety of post-natal phenotypic traits, and it has been suggested that pre-natal stress can have long term effects on the circadian rhythm of glucocorticoid hormone production. Despite the importance of the circadian system, the potential impact of developmental glucocorticoid exposure on circadian clock genes, has not yet been fully explored. Here, we showed that pre-natal exposure to corticosterone (CORT, a key glucocorticoid) resulted in a significant upregulation of two key hypothalamic circadian clock genes during the embryonic period in the Japanese quail (Coturnix japonica). Altered expression was still present 10 days into post-natal life for both genes, but then disappeared by post-natal day 28. At post-natal day 28, however, diel rhythms of eating and resting were influenced by exposure to pre-natal CORT. Males exposed to pre-natal CORT featured an earlier acrophase, alongside spending a higher proportion of time feeding. Females exposed to pre-natal CORT featured a less pronounced shift in acrophase and spent less time eating. Both males and females exposed to pre-natal CORT spent less time inactive during the day. Pre-natal CORT males appeared to feature a delay in peak activity levels. Our novel data suggest that these circadian clock genes and aspects of diurnal behaviours are highly susceptible to glucocorticoid disruption during embryonic development, and these effects are persistent across developmental stages, at least into early post-natal life.


Assuntos
Relógios Circadianos , Corticosterona , Coturnix , Glucocorticoides , Animais , Coturnix/genética , Feminino , Masculino , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Gravidez , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo
3.
BMC Neurosci ; 24(1): 58, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919674

RESUMO

The medial preoptic area (mPOA) regulates the probability and intensity of singing behavior in birds. Polzin and colleagues examined the molecular changes in the mPOA that were associated with gregarious song in European starlings (Sturnus vulgaris). High-throughput transcriptome analyses identified glutamate and dopamine pathways were highly enriched with gregarious song.


Assuntos
Estorninhos , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Social , Estorninhos/metabolismo , Dopamina/metabolismo , Área Pré-Óptica/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37589732

RESUMO

Maternal signals shape embryonic development, and in turn post-natal phenotypes. RNA deposition is one such method of maternal signalling and circadian rhythms are one trait thought to be maternally inherited, through this mechanism. These maternal circadian gene transcripts aid development of a functioning circadian system. There is increasing evidence that maternal signals can be modified, depending on prevailing environmental conditions to optimise offspring fitness. However, currently, it is unknown if maternal circadian gene transcripts, and consequently early embryonic gene transcription, are altered by maternal developmental conditions. Here, using avian mothers who experienced either pre-natal corticosterone exposure, and/or post-natal stress as juveniles we were able to determine the effects of the timing of stress on downstream circadian RNA deposition in offspring. We demonstrated that maternal developmental history does indeed affect transfer of offspring circadian genes, but the timing of stress was important. Avian mothers who experienced stress during the first 2 weeks of post-natal life increased maternally deposited transcript levels of two core circadian clock genes, BMAL1 and PER2. These differences in transcript levels were transient and disappeared at the point of embryonic genome transcription. Pre-natal maternal stress alone was found to elicit delayed changes in circadian gene expression. After activation of the embryonic genome, both BMAL1 and PER2 expression were significantly decreased. If both pre-natal and post-natal stress occurred, then initial maternal transcript levels of BMAL1 were significantly increased. Taken together, these results suggest that developmental stress differentially produces persistent transgenerational effects on offspring circadian genes.

5.
Horm Behav ; 148: 105298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621293

RESUMO

For nearly a century, we have known that brain photoreceptors regulate avian seasonal biology. Two photopigments, vertebrate ancient opsin (VA) and neuropsin (OPN5), provide possible molecular substrates for these photoreceptor pathways. VA fulfills many criteria for providing light input to the reproductive response, but a functional link has yet to be demonstrated. This study examined the role of VA and OPN5 in the avian photoperiodic response of Japanese quail (Coturnix japonica). Non-breeding male quail were housed under short days (6L:18D) and received an intracerebroventricular infusion of adeno-associated viral vectors with shRNAi that selectively inhibited either VA or OPN5. An empty viral vector acted as a control. Quail were then photostimulated (16L:8D) to stimulate gonadal growth. Two long days significantly increased pituitary thyrotrophin-stimulating hormone ß-subunit (TSHß) and luteinizing hormone ß-subunit (LHß) mRNA of VA shRNAi treated quail compared to controls. Furthermore, at one week there was a significant increase, compared to controls, in both hypothalamic gonadotrophin releasing hormone-I (GnRH-I) mRNA and paired testicular mass in VA shRNAi birds. Opn5 shRNAi facilitated the photoinduced increase in TSHß mRNA at 2 days, but no other differences were identified compared to controls. Contrary to our expectations, the silencing of deep brain photoreceptors enhanced the response of the reproductive axis to photostimulation rather than preventing it. In addition, we show that VA opsin plays a dominant role in the light-dependent neuroendocrine control of seasonal reproduction in birds. Together our findings suggest the photoperiodic response involves at least two photoreceptor types and populations working together with VA opsin playing a dominant role.


Assuntos
Coturnix , Opsinas , Animais , Masculino , Coturnix/fisiologia , Opsinas/genética , Reprodução , Encéfalo/metabolismo , Codorniz , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , RNA Mensageiro/metabolismo , Fotoperíodo
6.
Horm Behav ; 142: 105153, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325691

RESUMO

Most animals in the temperate zone exhibit robust seasonal rhythms in neuroendocrine, physiological and behavioral processes. The integration of predictive and supplementary environmental cues (e.g., nutrients) involves a series of discrete, and interconnected brain regions that span hypothalamic, thalamic, mesencephalic, and limbic regions. Species-specific adaptive changes in these neuroendocrine structures and cellular plasticity have likely evolved to support seasonal life-history transitions. Despite significant advances in our understanding of ecological responses to predictive and supplementary environmental cues, there remains a paucity of literature on how these diverse cues impact the underlying neural and cellular substrates. To date, most scientific approach has focused on neuroendocrine responses to annual changes in daylength, referred to as photoperiod, due to the robust physiological changes to light manipulations in laboratory settings. In this review, we highlight the relatively few animal models that have been effectively used to investigate how predictive day lengths, and supplementary cues are integrated across hypothalamic nuclei, and discuss key findings of how seasonal rhythms in physiology are governed by adaptive neuroendocrine changes. We discuss how specific brain regions integrate environmental cues to form a complex multiunit or 'modular' system that has evolved to optimize the timing of seasonal physiology. Overall, the review aims to highlight the existence of a modular network of neural regions that independently contribute to timing seasonal physiology. This paper proposes that a multi-modular neuroendocrine system has evolved in which independent neural 'units' operate to support species-specific seasonal rhythms.


Assuntos
Aves , Mamíferos , Animais , Aves/fisiologia , Hipotálamo , Mamíferos/fisiologia , Fotoperíodo , Reprodução/fisiologia , Estações do Ano
7.
Proc Natl Acad Sci U S A ; 116(26): 13116-13121, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189592

RESUMO

Synthesis of triiodothyronine (T3) in the hypothalamus induces marked seasonal neuromorphology changes across taxa. How species-specific responses to T3 signaling in the CNS drive annual changes in body weight and energy balance remains uncharacterized. These experiments sequenced and annotated the Siberian hamster (Phodopus sungorus) genome, a model organism for seasonal physiology research, to facilitate the dissection of T3-dependent molecular mechanisms that govern predictable, robust, and long-term changes in body weight. Examination of the Phodopus genome, in combination with transcriptome sequencing of the hamster diencephalon under winter and summer conditions, and in vivo-targeted expression analyses confirmed that proopiomelanocortin (pomc) is a primary genomic target for the long-term T3-dependent regulation of body weight. Further in silico analyses of pomc promoter sequences revealed that thyroid hormone receptor 1ß-binding motif insertions have evolved in several genera of the Cricetidae family of rodents. Finally, experimental manipulation of food availability confirmed that hypothalamic pomc mRNA expression is dependent on longer-term photoperiod cues and is unresponsive to acute, short-term food availability. These observations suggest that species-specific responses to hypothalamic T3, driven in part by the receptor-binding motif insertions in some cricetid genomes, contribute critically to the long-term regulation of energy balance and the underlying physiological and behavioral adaptations associated with the seasonal organization of behavior.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Phodopus/fisiologia , Fotoperíodo , Pró-Opiomelanocortina/metabolismo , Aclimatação/fisiologia , Animais , Peso Corporal/fisiologia , Temperatura Baixa/efeitos adversos , Biologia Computacional , Regulação para Baixo , Ingestão de Alimentos/fisiologia , Evolução Molecular , Feminino , Privação de Alimentos/fisiologia , Perfilação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/genética , Regiões Promotoras Genéticas/genética , Domínios e Motivos de Interação entre Proteínas/genética , Receptores dos Hormônios Tireóideos/metabolismo , Estações do Ano , Especificidade da Espécie , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/metabolismo , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia , Sequenciamento Completo do Genoma
8.
Trends Genet ; 34(2): 90-100, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29221677

RESUMO

Biological rhythms are pervasive in nature, yet our understanding of the molecular mechanisms that govern timing is far from complete. The rapidly emerging research focus on epigenetic plasticity has revealed a system that is highly dynamic and reversible. In this Opinion, I propose an epigenetic clock model that outlines how molecular modifications, such as DNA methylation, are integral components for timing endogenous biological rhythms. The hypothesis proposed is that an epigenetic clock serves to maintain the period of molecular rhythms via control over the phase of gene transcription and this timing mechanism resides in all cells, from unicellular to complex organisms. The model also provides a novel framework for the timing of epigenetic modifications during the lifespan and transgenerational inheritance of an organism.


Assuntos
Epigênese Genética , Histonas/genética , Modelos Genéticos , Periodicidade , Animais , Bactérias/genética , Bactérias/metabolismo , Metilação de DNA , Dinoflagellida/genética , Dinoflagellida/metabolismo , Histonas/metabolismo , Humanos , Fotoperíodo , Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
9.
Horm Behav ; 110: 90-97, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30826308

RESUMO

Seasonal changes in day length enhance and suppress immune function in a trait-specific manner. In Siberian hamsters (Phodopus sungorus) winter-like short days (SDs) increase blood leukocyte concentrations and adaptive T cell dependent immune responses, but attenuate innate inflammatory responses to simulated infections. Thyroid hormone (TH) signaling also changes seasonally and has been implicated in modulation of the reproductive axis by day length. Immunologically, TH administration in long days (LD) enhances adaptive immune responses in male Siberian hamsters, mimicking effects of SDs. This experiment tested the hypothesis that T3 is also sufficient to mimic the effects of SD on innate immune responses. Adult male hamsters housed in LDs were pretreated with triiodothyronine (T3; 1 µg, s.c.) or saline (VEH) daily for 6 weeks; additional positive controls were housed in SD and received VEH, after which cytokine, behavioral, and physiological responses to simulated bacterial infection (lipopolysaccharide; LPS) were evaluated. SD pretreatment inhibited proinflammatory cytokine mRNA expression (i.e. interleukin 1ß, nuclear factor kappa-light-chain-enhancer of activated B cells). In addition, the magnitude and persistence of anorexic and cachectic responses to LPS were also lower in SD hamsters, and LPS-induced inhibition of nest building behavior was absent in SD. T3 treatments failed to affect behavioral (food intake, nest building) or somatic (body mass) responses to LPS in LD hamsters, but one CNS cytokine response to LPS (e.g., hypothalamic TNFα) was augmented by T3. Together these data implicate thyroid hormone signaling in select aspects of innate immune responses to seasonal changes in day length.


Assuntos
Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Phodopus , Síndrome de Resposta Inflamatória Sistêmica/patologia , Tri-Iodotironina/farmacologia , Animais , Anorexia/induzido quimicamente , Anorexia/metabolismo , Anorexia/patologia , Peso Corporal/fisiologia , Cricetinae , Modelos Animais de Doenças , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Comportamento de Doença/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Infecções/induzido quimicamente , Infecções/metabolismo , Infecções/patologia , Lipopolissacarídeos , Masculino , Phodopus/metabolismo , Fotoperíodo , Reprodução/efeitos dos fármacos , Estações do Ano , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia
10.
Proc Natl Acad Sci U S A ; 113(24): 6689-94, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247405

RESUMO

Public health surveillance systems are important for tracking disease dynamics. In recent years, social and real-time digital data sources have provided new means of studying disease transmission. Such affordable and accessible data have the potential to offer new insights into disease epidemiology at national and international scales. We used the extensive information repository Google Trends to examine the digital epidemiology of a common childhood disease, chicken pox, caused by varicella zoster virus (VZV), over an 11-y period. We (i) report robust seasonal information-seeking behavior for chicken pox using Google data from 36 countries, (ii) validate Google data using clinical chicken pox cases, (iii) demonstrate that Google data can be used to identify recurrent seasonal outbreaks and forecast their magnitude and seasonal timing, and (iv) reveal that VZV immunization significantly dampened seasonal cycles in information-seeking behavior. Our findings provide strong evidence that VZV transmission is seasonal and that seasonal peaks show remarkable latitudinal variation. We attribute the dampened seasonal cycles in chicken pox information-seeking behavior to VZV vaccine-induced reduction of seasonal transmission. These data and the methodological approaches provide a way to track the global burden of childhood disease and illustrate population-level effects of immunization. The global latitudinal patterns in outbreak seasonality could direct future studies of environmental and physiological drivers of disease transmission.


Assuntos
Varicela , Bases de Dados Factuais , Herpesvirus Humano 3 , Imunização , Modelos Biológicos , Estações do Ano , Vacinas Virais/administração & dosagem , Adolescente , Varicela/epidemiologia , Varicela/prevenção & controle , Varicela/transmissão , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
11.
Artigo em Inglês | MEDLINE | ID: mdl-28608154

RESUMO

Bird migration is one of most salient annual events in nature. It involves predictable seasonal movements between breeding and non-breeding habitats. Both circadian and circannual clocks are entrained by photoperiodic cues and time daily and seasonal changes in migratory physiology and behavior. This mini-review provides an update on daily and seasonal rhythms of migratory behavior, and examines the neuroendocrine and molecular pathways involved in the timing of migration in songbirds. Recent findings have identified key neural substrates, and suggest the involvement of multiple neuroendocrine regulatory systems in controlling seasonal states in migrants. We propose that four distinct neural substrates are involved in the timing of migration and include (1) pineal gland and suprachiasmatic nucleus (mSCN); (2) a cluster of hypothalamic nuclei, the mediobasal hypothalamus (MBH); (3) dorsomedial hypothalamic nucleus (DMH); and (4) tanycytes along ependymal layer of the 3rd ventricle (3V). Cluster N, a nucleus in the telencephalon involved in the integration of geomagnetic cues, likely maintains functional connectivity with brain regions involved in timing songbird migration. These nuclei form an interconnected network that coordinates daily timing (pineal gland/mSCN), annual photoperiodic response (MBH, 3V), energetic state (MBH, DMH, 3V), and magnetic compass information (i.e., cluster N) for migration in songbirds.


Assuntos
Migração Animal/fisiologia , Ritmo Circadiano/fisiologia , Estações do Ano , Aves Canoras/fisiologia , Animais , Fotoperíodo , Glândula Pineal/fisiologia , Núcleo Supraquiasmático/fisiologia
12.
Gen Comp Endocrinol ; 243: 130-137, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916575

RESUMO

Precise timing of gene transcription is a fundamental component of many biological rhythms. DNA methylation and histone acetylation are two epigenetic modifications that can affect the probability of gene transcription and RNA expression. Enzymes involved in DNA methylation (dnmts) have been shown to exhibit photoperiodic rhythms in expression in the hypothalamus, which coincide with hypothalamic expression of deiodinase type III (dio3), a gene involved in the photoperiodic regulation of reproduction. It is currently unknown whether enzymes involved in histone deacetylation (hdacs) also vary in response to photoperiod, nor have seasonal changes in the circadian waveforms of methylation and/or acetylation enzymes been examined. The present work documents circadian and photoperiodic changes in dnmts and hdacs in whole hypothalamic dissections obtained from male Siberian hamsters (Phodopus sungorus) after 5-6weeks of exposure to SD. The data indicate that short days (SD) markedly inhibit dnmt3a expression, and that SD inhibition of dnmt3a was evident regardless of the alignment of circadian waveforms. Among hdacs, photoperiodic and circadian changes in expression were only observed in hdac4 expression. Recurrent temporal waveforms in epigenetic enzyme expression may provide molecular inputs to the timing systems that reprogram RNA expression to generate daily and annual phenotypic plasticity.


Assuntos
Ritmo Circadiano/fisiologia , Metilação de DNA , Histona Desacetilases/metabolismo , Hipotálamo/enzimologia , Metiltransferases/metabolismo , Phodopus/fisiologia , Estações do Ano , Animais , Cricetinae , Masculino , Reprodução/fisiologia
13.
Gen Comp Endocrinol ; 246: 194-199, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28017732

RESUMO

Epigenetic modifications in reproductive tissues have predominantly focused on pathological conditions, such as ovarian and uterine cancers. The contribution of DNA methylation and histone acetylation to the timing and control of fertility is not well described. Siberian hamsters provide an important model to investigate the relatively short-term regulation of fertility (e.g. estrous) as well as long-term timing of breeding (e.g. seasonal). Recent work has shown that DNA methyltransferase 3a (dnmt3a) expression is associated with reproductive involution. Here, the objectives were to identify the impact of photoperiod on hdac1-3 expression in hamster testicular, ovarian and uterine tissue. Then, we assessed the effect of E2P4 and estrous cycling on hdac1-3 expression in uterine tissue. Testicular expression of hdac1 was significantly reduced, whereas hdac3 increased in reproductively photoregressed male hamsters; hdac2 expression did not significantly change across photoperiod conditions. There was no significant photoperiodic effect on ovarian expression of hdac1-3. Uterine expression of hdac3 expression was greater in long day hamsters; exposure to short days significantly reduced uterine hdac2 expression. Ovariectomized hamsters administered a single bolus injection of oil were found to have elevated uterine hdac2 compared to E2P4 treated females 12h and 24h post injection. Uterine hdac1-3 expression was relatively constant across the estrous cycle. Altogether these data indicate tissue-dependent photoperiodic regulation of hdac1-3 expression and that E2P4 may inhibit uterine hdac2 over long-term breeding cycles.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Ovário/metabolismo , Phodopus/metabolismo , Fotoperíodo , Animais , Western Blotting , Ritmo Circadiano/efeitos dos fármacos , Cricetinae , Estradiol/farmacologia , Estrogênios/farmacologia , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/metabolismo , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilases/genética , Masculino , Ovário/efeitos dos fármacos , Phodopus/genética , Progesterona/farmacologia , Progestinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Útero/efeitos dos fármacos , Útero/metabolismo
14.
Front Neuroendocrinol ; 37: 76-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25456046

RESUMO

Seasonal variations in immunity are common in nature, and changes in day length are sufficient to trigger enhancement and suppression of immune function in many vertebrates. Drawing primarily on data from Siberian hamsters, this review describes formal and physiological aspects of the neuroendocrine regulation of seasonal changes in mammalian immunity. Photoperiod regulates immunity in a trait-specific manner, and seasonal changes in gonadal hormone secretion and thyroid hormone signaling all participate in seasonal immunomodulation. Photoperiod-driven changes in the hamster reproductive and immune systems are associated with changes in iodothyronine deiodinase-mediated thyroid hormone signaling, but photoperiod exerts opposite effects on select aspects of the epigenetic regulation of reproductive neuroendocrine and lymphoid tissues. Photoperiodic changes in immunocompetence may explain a proportion of the annual variance in disease incidence and severity in nature, and provide a useful framework to help understand brain-immune interactions.


Assuntos
Sistema Imunitário/fisiologia , Fotoperíodo , Estações do Ano , Adaptação Fisiológica , Animais , Hormônios/fisiologia , Humanos
15.
Proc Natl Acad Sci U S A ; 110(41): 16651-6, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24067648

RESUMO

In seasonally breeding vertebrates, changes in day length induce categorically distinct behavioral and reproductive phenotypes via thyroid hormone-dependent mechanisms. Winter photoperiods inhibit reproductive neuroendocrine function but cannot sustain this inhibition beyond 6 mo, ensuring vernal reproductive recrudescence. This genomic plasticity suggests a role for epigenetics in the establishment of seasonal reproductive phenotypes. Here, we report that DNA methylation of the proximal promoter for the type III deiodinase (dio3) gene in the hamster hypothalamus is reversible and critical for photoperiodic time measurement. Short photoperiods and winter-like melatonin inhibited hypothalamic DNA methyltransferase expression and reduced dio3 promoter DNA methylation, which up-regulated dio3 expression and induced gonadal regression. Hypermethylation attenuated reproductive responses to short photoperiods. Vernal refractoriness to short photoperiods reestablished summer-like methylation of the dio3 promoter, dio3 expression, and reproductive competence, revealing a dynamic and reversible mechanism of DNA methylation in the mammalian brain that plays a central role in physiological orientation in time.


Assuntos
Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Fotoperíodo , Estações do Ano , Percepção do Tempo/fisiologia , Análise de Variância , Animais , Cricetinae , Enzimas de Restrição do DNA , Ensaio de Imunoadsorção Enzimática , Feminino , Hipotálamo/metabolismo , Imuno-Histoquímica , Iodeto Peroxidase/metabolismo , Masculino , Phodopus , Análise de Sequência de DNA
16.
Horm Behav ; 72: 78-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25989596

RESUMO

European starlings (Sturnus vulgaris) exhibit seasonal changes in singing and in the volumes of the neural substrate. Increases in song nuclei volume are mediated at least in part by increases in day length, which is also associated with increases in plasma testosterone (T), reproductive activity, and singing behavior in males. The correlations between photoperiod (i.e. daylength), T, reproductive state and singing hamper our ability to disentangle causal relationships. We investigated how photoperiodic-induced variation in reproductive state modulates the effects of T on singing behavior and song nuclei volumes in adult female starlings. Female starlings do not naturally produce measureable levels of circulating T but nevertheless respond to exogenous T, which induces male-like singing. We manipulated photoperiod by placing birds in a photosensitive or photorefractory state and then treated them with T-filled or empty silastic implants. We recorded morning singing behavior for 3 weeks, after which we assessed reproductive condition and measured song nuclei volumes. We found that T-treated photosensitive birds sang significantly more than all other groups including T-treated photorefractory birds. All T-treated birds had larger song nuclei volumes than with blank-treated birds (despite photorefractory T-treated birds not increasing song-rate). There was no effect of photoperiod on the song nuclei volumes of T-treated birds. These data show that the behavioral effects of exogenous T can be modulated by reproductive state in adult female songbirds. Furthermore, these data are consistent with other observations that increases in singing rate in response to T are not necessarily due to the direct effects of T on song nuclei volume.


Assuntos
Reprodução , Estorninhos/fisiologia , Testosterona/farmacologia , Vocalização Animal/efeitos dos fármacos , Animais , Feminino , Masculino , Fotoperíodo , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Estações do Ano , Estorninhos/sangue , Testosterona/sangue , Vocalização Animal/fisiologia
17.
Eur J Neurosci ; 40(6): 2941-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24974859

RESUMO

Variation in environmental factors such as day length and social context greatly affects reproductive behavior and the brain areas that regulate these behaviors. One such behavior is song in songbirds, which males use to attract a mate during the breeding season. In these species the absence of a potential mate leads to an increase in the number of songs produced, while the presence of a mate greatly diminishes singing. Interestingly, although long days promote song behavior, producing song itself can promote the incorporation of new neurons in brain regions controlling song output. Social context can also affect such neuroplasticity in these song control nuclei. The goal of the present study was to investigate in canaries (Serinus canaria), a songbird species, how photoperiod and social context affect song and the incorporation of new neurons, as measured by the microtubule-associated protein doublecortin (DCX) in HVC, a key vocal production brain region of the song control system. We show that long days increased HVC size and singing activity. In addition, male canaries paired with a female for 2 weeks showed enhanced DCX-immunoreactivity in HVC relative to birds housed alone. Strikingly, however, paired males sang fewer songs that exhibited a reduction in acoustic features such as song complexity and energy, compared with birds housed alone, which sang prolifically. These results show that social presence plays a significant role in the regulation of neural and behavioral plasticity in songbirds and can exert these effects in opposition to what might be expected based on activity-induced neurogenesis.


Assuntos
Proteínas Aviárias/metabolismo , Encéfalo/fisiologia , Canários/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Comportamento Social , Vocalização Animal/fisiologia , Acústica , Animais , Contagem de Células , Proteínas do Domínio Duplacortina , Imuno-Histoquímica , Masculino , Neurônios/fisiologia , Fotoperíodo
18.
Brain Behav Immun ; 36: 61-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24145050

RESUMO

Annual rhythms in morbidity and mortality are well-documented, and host defense mechanisms undergo marked seasonal phenotypic change. Siberian hamsters (Phodopus sungorus) exhibit striking immunological plasticity following adaptation to short winter day lengths (SD), including increases in blood leukocytes and in the magnitude of T cell-mediated immune responses. Thyroid hormone (TH) signaling is rate-limited by tissue-level expression of iodothyronine deiodinase types II and III (dio2, dio3), and dio2/dio3 expression in the central nervous system gate TH-dependent transduction of photoperiod information into the neuroendocrine system. THs are also potent immunomodulators, but their role in seasonal immunobiology remains unexamined. Here we report that photoperiod-driven changes in triiodothyronine (T3) signaling mediate seasonal changes in multiple aspects of immune function. Transfer from long days (LD) to SD inhibited leukocyte dio3 expression, which increased cellular T4→T3 catabolism. T3 was preferentially localized in the lymphocyte cytoplasm, consistent with a non-nuclear role of T3 in lymphoid cell differentiation and maturation. Exposure to SD upregulated leukocyte DNA methyltransferase expression and markedly increased DNA methylation in the dio3 proximal promoter region. Lastly, to bypass low endogenous T3 biosynthesis in LD lymphocytes, LD hamsters were treated with T3, which enhanced T cell-dependent delayed-type hypersensitivity inflammatory responses and blood leukocyte concentrations in a dose-dependent manner, mimicking effects of SD on these immunophenotypes. T3 signaling represents a novel mechanism by which environmental day length cues impact the immune system: changes in day length alter lymphoid cell T3-signaling via epigenetic transcriptional control of dio3 expression.


Assuntos
Ritmo Circadiano/imunologia , Iodeto Peroxidase/metabolismo , Leucócitos/enzimologia , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Cricetinae , Metilação de DNA , Feminino , Iodeto Peroxidase/genética , Leucócitos/metabolismo , Masculino , Phodopus , Fotoperíodo , Estações do Ano
19.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417844

RESUMO

A series of well-described anabolic and catabolic neuropeptides are known to provide short-term, homeostatic control of energy balance. The mechanisms that govern long-term, rheostatic control of regulated changes in energy balance are less well characterized. Using the robust and repeatable seasonal changes in body mass observed in Siberian hamsters, this report examined the role of prolactin in providing long-term rheostatic control of body mass and photoinduced changes in organ mass (ie, kidney, brown adipose tissue, uterine, and spleen). Endogenous circannual interval timing was observed after 4 months in a short photoperiod, indicated by a significant increase in body mass and prolactin mRNA expression in the pituitary gland. There was an inverse relationship between body mass and the expression of somatostatin (Sst) and cocaine- and amphetamine-regulated transcript (Cart). Pharmacological inhibition of prolactin release (via bromocriptine injection), reduced body mass of animals maintained in long photoperiods to winter-short photoperiod levels and was associated with a significant increase in hypothalamic Cart expression. Administration of ovine prolactin significantly increased body mass 24 hours after a single injection and the effect persisted after 3 consecutive daily injections. The data indicate that prolactin has pleiotropic effects on homeostatic sensors of energy balance (ie, Cart) and physiological effectors (ie, kidney, BAT). We propose that prolactin release from the pituitary gland acts as an output signal of the hypothalamic rheostat controller to regulate adaptive changes in body mass.


Assuntos
Neuropeptídeos , Prolactina , Cricetinae , Animais , Ovinos , Feminino , Prolactina/metabolismo , Estações do Ano , Hipotálamo/metabolismo , Phodopus/metabolismo , Neuropeptídeos/metabolismo , Fotoperíodo
20.
Brain Behav Immun ; 32: 94-104, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23474187

RESUMO

The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c(+) dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses.


Assuntos
Relógios Circadianos/imunologia , Dermatite/imunologia , Leucócitos/imunologia , Ciclos de Atividade/imunologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Cricetinae , DNA Complementar/biossíntese , DNA Complementar/genética , Escuridão , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Feminino , Citometria de Fluxo , Expressão Gênica , Hidrocortisona/sangue , Hipersensibilidade Tardia/imunologia , Iluminação , Tecido Linfoide/imunologia , Tecido Linfoide/fisiologia , Masculino , Melatonina/farmacologia , Atividade Motora/fisiologia , Proteínas Circadianas Period , Phodopus , Glândula Pineal/fisiologia , Reação em Cadeia da Polimerase , RNA/biossíntese , RNA/isolamento & purificação , Baço/fisiologia , Estresse Psicológico/imunologia , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA